菱形的性质与判定学习要求理解菱形的概念,掌握菱形的性质定理及判定定理.课堂学习检测一、填空题:1.菱形的定义:__________________的平行四边形叫做菱形.2.菱形的性质:菱形是特殊的平行四边形,它具有四边形和平行四边形的______还有:菱形的四条边______;菱形的对角线______,并且每一条对角线平分______;菱形的面积等于__________________,它的对称轴是______________________________.3.菱形的判定:一组邻边相等的______是菱形;四条边______的四边形是菱形;对角线______的平行四边形是菱形.4.已知菱形的周长为40cm,两个相邻角度数之比为1∶2,则较长对角线的长为______cm.5.若菱形的两条对角线长分别是6cm,8cm,则它的周长为______cm,面积为______cm2.二、选择题6.对角线互相垂直平分的四边形是().(A)平行四边形(B)矩形(C)菱形(D)任意四边形7.顺次连结对角线相等的四边形各边中点,所得四边形是().(A)矩形(B)平行四边形(C)菱形(D)任意四边形8.下列命题中,正确的是().(A)两邻边相等的四边形是菱形(B)一条对角线平分一个内角的平行四边形是菱形(C)对角线垂直且一组邻边相等的四边形是菱形(D)对角线垂直的四边形是菱形9.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是().1/6(A)4(B)8(C)12(D)1610.菱形ABCD中,∠A∶∠B=1∶5,若周长为8,则此菱形的高等于().(A)(B)4(C)1(D)2综合、运用、诊断一、解答题11.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4.求:(1)∠ABC的度数;(2)菱形ABCD的面积.12.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,求AB的值.2/613.如图,在平行四边形ABCD中,E,F分别为边AB,CD的中点,连结DE,BF,BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.14.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.15.如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.3/6(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度...