学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.设sin160°=a,则cos340°的值是()A.1-a2B.C.-D.±【解析】因为sin160°=a,所以sin(180°-20°)=sin20°=a,而cos340°=cos(360°-20°)=cos20°=.【答案】B2.已知α∈,tanα=-,则sin(α+π)=()A.B.-C.D.-【解析】因为sin(α+π)=-sinα,且tanα=-,α∈,所以sinα=,则sin(α+π)=-.【答案】B3.已知sin=,则cos等于()A.-B.C.D.-【解析】cos=cos=-sin=-.故选A.【答案】A4.设tan(5π+α)=m,则的值为()A.B.C.-1D.1【解析】由tan(5π+α)=m,得tanα=m,所以====.【答案】A5.若f(cosx)=cos2x,则f(sin15°)的值为()A.-B.C.-D.【解析】因为f(sin15°)=f(cos75°)=cos150°=-.【答案】A二、填空题6.若sin(π+α)+cos=-m,则cos+2sin(2π-α)的值为________.【解析】∵sin(π+α)+cos=-sinα-sinα=-m,∴sinα=,∴cos+2sin(2π-α)=-sinα-2sinα=-3sinα=-.【答案】-7.下列三角函数:①sin;②cos;③sin;④cos;⑤sin(n∈Z).其中与sin数值相同的是________.(填序号)【解析】①sin=②cos=cos=sin;③sin=sin;④cos=cos=cos=-cos=-sin;⑤sin=sin=sin=sin.因此与sin数值相同的是②③⑤.【答案】②③⑤三、解答题8.求sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°的值.【解】原式=-sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°)+tan(2×360°+225°)=-sin(180°-60°)·cos(180°+30°)-cos(360°-60°)·sin(360°-30°)+tan(180°+45°)=sin60°cos30°+cos60°sin30°+tan45°=×+×+1=2.9.已知f(α)=.(1)化简f(α);(2)若f=-,且α是第二象限角,求tanα.【解】(1)f(α)===sinα.(2)由sin=-,得cosα=-,又α是第二象限角,所以sinα==,则tanα==-.[能力提升]1.计算sin21°+sin22°+sin23°+…+sin289°=()A.89B.90C.D.45【解析】原式=sin21°+sin22°+sin23°+…+sin244°+sin245°+sin2(90°-44°)+…+sin2(90°-3°)+sin2(90°-2°)+sin2(90°-1°)=sin21°+sin22°+sin23°+…+sin244°+sin245°+cos244°+…+cos23°+cos22°+cos21°=(sin21°+cos21°)+(sin22°+cos22°)+(sin23°+cos23°)+…+(sin244°+cos244°)+sin245°=44+=.【答案】C2.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos+sin的值;(2)求tan(π-θ)-的值.【导学号:70512009】【解】由已知原方程判别式Δ≥0,即(-a)2-4a≥0,则a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,即a2-2a-1=0,所以a=1-或a=1+(舍去).则sinθ+cosθ=sinθcosθ=1-.(1)cos+sin=sinθ+cosθ=1-.(2)tan(π-θ)-=-tanθ-=-=-=-=-=+1.