124.2解一元二次方程(1)教学目标【知识与能力】1.理解一元二次方程的概念.2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.3.体会一元二次方程是刻画实际问题的重要数学模型.4.理解一元二次方程解的概念.【过程与方法】1.通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2.体会数学来源于生活,又回归生活的理念.3.由设未知数、列方程向学生渗透方程的思想,从而进一步培养学生数学思维能力.【情感态度价值观】1.培养学生主动探究知识、自主学习和合作交流的意识.2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.3.体会数学知识与现实世界的联系.教学重难点【教学重点】一元二次方程的概念及一般形式.【教学难点】1.由具体问题抽象出一元二次方程的转化过程.2.正确识别一般式中的“项”及“系数”.课前准备多媒体课件教学过程一、新课引入:导入一:【课件展示】一桶油漆可刷的面积为1500dm2,张明用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?【师生活动】学生思考,教师引导回答下列问题:(1)设其中一个盒子的棱长为xdm,则一个正方体的表面积为dm2;(2)题目中的等量关系为;因此,根据题意可列方程;化简可得.【师生活动】学生在教师的引导下完成填空,教师及时引导和点拨.追问:如何解这个方程?5和-5是方程的两个根,它们都符合问题的实际意义吗?(棱长不能为负数,所以正方体的棱长为5dm)【课件展示】解:设其中一个盒子的棱长为xdm,则一个正方体的表面积为6x2dm2.根据题意,得10×6x2=1500,整理,得x2=25,根据平方根的意义,得x=±5.2即x1=5,x2=-5(不合题意,舍去).答:其中一个盒子的棱长为5dm.导入二:1.什么是一个数的平方根?平方根有哪些性质?2.计算:9的平方根是,425的平方根是.3.若x2=36,则x的值是.4.什么是完全平方公式?【师生活动】共同复习平方根的概念和性质及完全平方公式.[设计意图]由实际问题导入新课,让学生体会数学来源于生活,又应用于生活,激发学生学习数学的兴趣,同时教师引导学生分析解决问题,为以后学习一元二次方程的应用打下基础.通过复习平方根的概念和性质及完全平方公式,让学生很自然地应用旧知识解决新问题.二、新知构建:[过渡语]我们复习了平方根的定义,根据平方根的定义可以解某些特殊的一元二次方程,让我们尝试解这些方程吧.试着做做【课件展示】1.根据平方根的意义,解下列方程:(1)x2=4;(2)(x+1)2=4.【师生活动】学生独立思考回答,教...