优翼课件导入新课讲授新课当堂练习课堂小结学练优八年级数学下(JJ)教学课件21.2一次函数的图像与性质第二十一章一次函数第2课时一次函数的性质学习目标1.掌握一次函数的性质.(重点)2.能灵活运用一次函数的图象与性质解答有关问题.(难点)导入新课复习引入1.一次函数图象有什么特点?2.作出一次函数图象需要描出几个点?只需要描出2个点.一次函数y=kx+b的图象是一条直线,直线上所有点的坐标都满足表达式y=kx+b.一般选直线与两坐标轴的两交点,即(0,b)和(,0).讲授新课一次函数的性质一合作探究在同一直角坐标系中分别作出下列一次函数的图象:y=2x+6y=-xy=-x+6y=5x0x465321235-1-264-1-31yy=-xy=5xy=2x+6y=-x+6思考:(1)哪些函数,y的值是随x的值的增大而增大的?(2)哪些函数,y的值是随x的值的增大而减小的?(3)y的值随x的增大而增大和y的值随x值的增大而减小两种函数,它们的区别和自变量系数的符号有怎样的关系?归纳总结一般地,我们有:对于一次函数y=kx+b(k,b为常数,且k≠0):当k>0时,y的值随x的值的增大而增大;当k<0时,y的值随x的值的增大而减小.大家谈谈(1)哪些函数的图像与y轴的交点在x轴的上方,哪些函数与y轴的交点在x轴的下方?(2)函数的图像与y轴的交点在x轴的上方和函数的图像与y轴的交点在x轴的下方,这两种函数,它们的区别与常数项有怎样的关系?(3)正比例函数的图像一定经过哪个点?一次函数y=kx+b的图像是经过y轴上的点(0,b)的一条直线.当b>0时,点(0,b)在x轴的上方;当b<0时,点(0,b)在x轴的下方;当b=0时,点(0,0)是原点,即正比例函数y=kx的图像是经过原点的一条直线.归纳总结几个一次函数的大致图象如图所示,试分别确定k和b的符号:xxxoyyooyk0,b0k0,b0k0,b0<>><<=练一练典例精析例1.已知关于x的一次函数y=(2k-1)x+(2k+1).(1)当k满足什么条件时,函数y的值随x的值的增大而增大?(2)当k满足什么条件时,y=(2k-1)x+(2k+1)的图像经过原点?(3)当k满足什么条件时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在x轴的下方?(4)当k满足什么条件时,函数y的值随x的值的增大而减小且函数图像与y轴的交点在x轴的上方?解:(1)当2k-1>0时,y的值随x的值增大而增大.解2k-1>0,得k>0.5.(2)当2k+1=0,即k=-0.5时,函数y=(2k-1)x+(2k+1)的图像经过原点.(3)当2k+1<0,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在x轴的下方.解2k+1<0,得k<-0.5.(4)当2k-1<0时,y的值随x的值增大而减小.解得k<0.5.当...