第七天1.【答案】12.【解析】222222222121212lim...lim...lim...12111nnnnnnnnnnnnnnnnnnn22222111222limlim...lim121nnnnnnnnnnnnnnn2221121lim...2122nnnnnn,由夹逼准则,原极限为12.2.【答案】12.【解析】2222222221212lim...lim...1212lim...111nnnnnnnnnnnnnnnnnnnnnnnnnnnn22222111222limlim...lim121nnnnnnnnnnnnnnnnnnnn2221121lim...2122nnnnnnnnn,由夹逼准则,原极限为12.3.【解析】先证na单调有界.显然0(1,2,)nan,由初等不等式:对非负数,xy必有2xyxy,易知1111()21(1,2,)22nnnaana.再考察121111(1)(1)1221nnnaaa.因此,na单调下降且有界,存在极限limnna.令lim=nnaa11111limlim122nnnnnaaaaaaa或-1舍所以lim=1nna.4.【解析】用单调有界准则.由题设显然有0nx,数列nx有下界.证明nx单调减:用归纳法.21166104xxx;设1nnxx,则1166nnnnxxxx.由此,nx单调减.由单调有界准则,limnnx存在.设lim,(0)nnxaa,在恒等式16nnxx两边取极限,即1limlim66nnnnxxaa,解之得3a(2a舍去).5.【解析】(1)由于0x,于是10sinnnnxxx,说明数列nx单调减少且0nx由单调有界准则知limnnx存在.记为A.递推公式两边取极限得sin,0AAA(2)原式21sinlim()nxnnnxx=,为“1”型.因为离散型不能直接用洛必达法则,先考虑210sinlim()tttt210sinlim()tttt201sinlimln()tttte2011(cossin)limsin2tttttttte30cossinlim2ttttte200cossincossinlimlim66tttttttttee16e所以2221111016sinsinlim()lim()lim()nnxxnnxnnxnnxxxxxxe==