)(xg),()(xg)(xf0x)(xf),(【解】因为在上连续,则有原函数.而在处为第一类间断点,则在上不存在原函数.)(xfI)(xfI几个重要结论:在区间上连续在上有原函数;1))(xfI)(xfI2)在区间上不连续在上不存在原函数)(xfI)(xfI3)在区间上有第一类间断点在上不存在原函数;1111)1(1)1d()1(232310231021nnnnnnnnnnnnxnxxna.1)e1(111limlim23123nnnnnnna)2π,0(,sinxxx,sin)sin(sinxx【解】由知xxcos)cos(sin2π020.1dsind)sin(sinxxxx2π020.1dcosd)cos(sinxxxx则故选(A)222222)3()3d(8136)136d(21d1365xxxxxxxxxx.23arctan4)136ln(212Cxxxxx1darcsin21darcsinxxxxx【解1】原式txsintttdttsin1dsinsin2sintdsinttt.|cotcsc|lnsinCtttt【解2】令原式xxxxxxxxxde2e21d)e(22.22Cexexexxxx【解】原式,sintx4cos1coscos)sin2(cossin202202ttdtttdtt【解】令原式【解】原式π00422πdsin|cos|2πdcoscos2πxxxxxxaxaxax2022d)(2π2π2π023232πdcos2dcos)sin1(attattat【解1】原式)sin(taaxaxaxax2022d)(axaxaaax2022d)(])[(aaxxaxa20322πd2【解2】原式0000cos)(coscoscos)(xdxxfxdxxxxdxxf,2coscos)(00dxxxxdxxf.2)(xxf【解】1103)(3)(dttfxxdttfx112)(9)(dttfxxf2)(11dttf.29)(2xxf【解】【解】原式0dcos11xx0d2sin2xx.221010cos1dedsinenxnxnxxx1010dcose1cose1xnxnnxnxx101dcosecose11xnxnnxuxtxxuuftxtf00d)(d)(,1)1()(20xxxduuf,1)(01duuf,21)(01duuf.23211)(11dxf【解】令,则Cxedxxfx)(1)(lndxxxf1ln)(lnxdxf【解】0ln1xx342232122dsin132sind121231tttxxxx令36d)2cos1(131tt【解】.12132sin21613136t【...