1()fx有一阶连续导数,且(0)='(0)1ff=,求0(sin)1limln()xfxfx→−解:①导数定义0(sin)(0)sin'(0)sinlim(0)1ln()ln(0)'(0)(0)xfxfxfxffxffxxf→−===−②中值定理1(sin)1(sin)(0)'()sinfxfxffx−=−=22'()ln()ln()ln(0)()ffxfxfxf=−=原极限1022'()sin'(0)lim(0)1'()'(0)()(0)xfxffffxff→====2设0x,0xtxedtxe=,则limx→+=___1____解:0xtxedtex=,0lnlnxtxedtx=−00lnln1limlimlimxtxxxxxtedtxexxedt→+→+→+−==−000limlimxxtxxxxxxxttxxeedtexeexedtedtxe→+→+−+−==+=1limlim12xxxxxxxexexeexex→+→+++==+++3130lim()3xxxxxabcabc→++=3lim()3nnnnnabcabc→++=12lim(nnnaa→++…1)nnma(其中0ia,1,2,i=…m)=12max(,,aa…)ma1122lim(nnnpapa→++…112)max(,nnmmpaaa=,…)ma12lim(2nnnaa→++…12020122020)max(,,nnaaa+=…2020)a4当0x→时,确定下列函数是x的几阶无穷小量(1)(1)1xx+−(2)11xx+−−(3)tansinxxee−(4)3434xx+(5)31arcsincosxxx+−(6)ln(1)0(1cos)xxtdt−+−5①证明方程210xnex−+=有唯一实根nx(1,2,n=…)②证lim1nnx→=−③证11()2nxnn+→6①11(31)xyxe−=−的斜渐近线方程为32yx=+②{331atxt=+2331atyt=+(1)t−的斜渐近线方程为0xya++=7设()fx的定义域为()22−,()fx可导,且(0)1f=,()0fx,212costan0(cos)lim()()xxxnnfxhxefx+→+=,求()fx及()fx的极值8设(,)fxy可微,且满足条件(0,)cot(0,)yfyyfy=,(,)ffxyx=−,(0,)12f=,求(,)fxy9()xfxxe=,()1lim(0)nnf→=______()11(0)()knkffnn==___________解:10!nxnxxen+==又(0)'(0)xxeffx=++…()(0)!nnfxn++…()()()(0)1(0),(0)!(1)!nnkffnfknn===−110011()()1nxkkffxdxxedxnn====10设()fx在xa=处可导,则3322()()limxafxafaxax→−=−_______(A)23'()2()afafa+(B)21'()()32afafa−+(C)323'()()3afafa−(D)23'()()22afaafa−+11①()fx有连续导数,且0()'()lim11xxfxfxe−→+=−,则当(0)0f=时()(A)(0)f是()fx的极大值(B)(0)f是()fx的极小值(C)(0)f不是()fx的极大值(D)不能判断(0)f是否为极值②(,)fxy在(00)的某邻域内连续,且2200(,)(0,0)lim0sinsinxyfxyfAxxyy→→−=−+,则(B)(A)点(00)是()fx的极大值点(B)点(00)是()fx的极小值点(C)不是极值点(D)无法判定解:222213sinsin(sin)sin024xxyyxyy...