2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫12022考研数学全程班作业答案——《高分强化521》作业4第1章函数、极限与连续1.4数列极限计算【28】求222111lim11123nn→−−−=.解析:原式111111lim1111112233nnn→=−+−+−+111111lim1111112323nnn→=−−−+++1231341lim23423nnnnn→−+=11lim22nnn→+==【29】设1x<,求()()()()242lim1111nnxxxx→++++=.解析:原式()()()()221111lim1nnxxxxx→−+++=−1211lim11nnxxx+→−==−−【30】n232limcoscosc22oscos2nxxxx→=.解析:原式23coscosc2oscossin2limi222n2snnnnxxxxxx→=23111coscoscoscossin22222m2in2lisnnnnxxxxxx−−→=111cossinsin2=lim=limsis2222i2nnnnnnnnxxxxx−→→1sinsinl2im2nnnxxxx→==.【31】n11lim2(12)nnkk→=+++=.解:原式()()nnn11111=lim=limlim1111nnnnnkkkkkkn→→→===−+++n1lim11nnee→−−+==.一笑而过考研数学2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫2【32】322121coslim1nnnnnn→−+−=.解析:原式342·=11·211lim1nnnnn→+−2112lim=1112nnnn→=.【33】已知极限2021(1)lim0kknnncn→−−=,其中,ck均为常数,则c=,k=.解析:(方法一)2021202120211111(1)limlimlimkkkkknnnnnknnnncnnn→→→−−−−===则12021,kkc−==,解得2022,2022kc==.(方法二)将(1)kn−进行二项式定理展开,则112211221202120212021()limlimlim0kkkkkkkkkkknnnnnCnCnCnCnkncnnn−−−−−→→→−−++−+===故2022,2022kc==.【34】求极限lim()2nnnnab→+=.0,0()ab解析:原式lim12nnnabne→+−=1111lim2nnnabne→−+−=11lnln111lim112abnnneenne→−−+=()1lnlnln2ababeeab+===【35】1lim1nnnen→−+=.解析:原式1=lim1xxxex→+−+1ln1=lim1x...