—1—0基础知识09课后小测验答案1.微分方程221dyydxx的通解为()A.1tanyCxB.1arctanyxC.1tan()yCxD.1arctanyCx答案:D解析:221dyydxx化为221dydxyx,积分得1arctanyCx,故通解为11arctantanyCyCxx或.2.求微分方程0xyy满足初始条件(1)2y的特解A.22yxB.21yxC.2yxD.1yx答案:C解析:0xyy为可分离变量的微分方程,化为1dydxyx,积分得1lnlnlnlnlnCyxCCxx,所以Cyx,去掉绝对值符号得Cyx,又(1)2y,所以2C,特解为2yx.3.微分方程220ydxxxydy的通解为().A.yxyCeB.yxyeC.xyyCeD.xyye答案:A解析:220ydxxxydy为齐次方程,方程两边同除2xdx得2()10yydyxxdx,令yux,则dyduuxdxdx,代入原方程得1udxduux,—2—两边积分得ln||ln||ln0uuxC,即lnuCux,将yux代入,解得yxyCe(C为任意常数).4.求微分方程22xyxye的满足初始条件(0)1y的特解.A.2()xyxCeB.2(1)xyxeC.2xyxeD.2xyCe答案:B解析:法一:方程两边同乘22xdxxee得2221xxyexey,即2(1)xye,两边同时积分得2xyexC,整理得2()xyxCe,由(0)1y得1C,故2(1)xyxe.法二:由一阶非齐次线性微分方程通解公式得2222·()xdxxdxxxyeedxCexCe,由(0)1y得1C,故2(1)xyxe5.求微分方程sindyyxdxxx满足初始条件1xy的特解.A.1(1cos)yxxB.1(1cos)yxxC.(1cos)yxxD.1(1cos)yxx答案:A解析:法一:方程两边同乘1dxxex,得sinxyyx即()sinxyx,两边同时积分得cosxyxC,整理得1(cos)yxCx,代入初值条件,1xy,得1C,故所求特解为1(1cos)yxx法二:11ddsin1sin1eedd(cos)xxxxxxyxCxxCxCxxxx—3—代入初值条件,1xy,得1C,故所求特解为1(1cos)yxx6.求20yyy的通解A.12eexxyCCB.22eexxyCC.212eexxyCCD.212eexxyCC答案:D解析:特征方程为220rr,解得121,2rr,故方程的通解为212eexxyCC.7.求40yy的通解A.412exxyCeCB.412exyCCC.12exyCCD.41exyC答案:B解析:特征方程为240rr...