高数强化1-5巩固练习《高数辅导讲义·严选题》P2-P4:10,11,12,13,27,28,29综合测试1.设0x时,2cosaxbxcx是比2x高阶无穷小,其中,,abc为常数,则(A)1,0,12abc.(B)1,0,02abc.(C)1,0,12abc.(D)1,0,02abc.2.当0x时,下列无穷小中阶数最高的是(A)1)1(2xx.(B).1e24xx(C).dsin202ttx(D).31213xx3.设xa时()fx与()gx分别是xa的n阶与m阶无穷小,则下列命题①()()fxgx是xa的nm阶无穷小.②若nm,则)()(xgxf是xa的nm阶无穷小.③若nm,则()()fxgx是xa的n阶无穷小.正确的个数是(A)1.(B)2.(C)3.(D)0.4.以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是(1)设)2,1(0)(limixfiax且12()()()fxfxxa,又)(limxgax,则.))(1(lim))(1(lim)(2)(1xgaxxgaxxfxf(2)设0)(lim)(limxgxfiaxiax,()0,(0),1,2,ifxxai且12()()fxfx,12()()()gxgxxa,则.)(lim)(lim)(2)(121xgaxxgaxxfxf(3)设)2,1(0)(lim)(limixgxfiaxiax,0)(limxhax,12()()fxfx,(4)12()()()gxgxxa,又11()lim1()xafxrgx,则122()()()()limlim()()xaxafxgxfxgxhxhx(A)0.(B)1.(C)2.(D)3.5.设()yyx是方程3+2exyyy的解,且满足(0)(0)0yy,则当0x时,与()yx为等价无穷小的是(A)2sinx.(B)sinx.(C)2ln(1)x.(D)2ln1x.6.设当0x时,有ln12320~sindxaxbxcxtt,则(A)1,1,03abc.(B)1,1,03abc.(C)1,1,03abc.(D)0,2,0abc7.设2sin2000()dln(1)d,(1cos)dxtxfxttuugxtt,则当0x时,()fx是()gx的(A)低阶无穷小.(B)高阶无穷小.(C)等价无穷小.(D)同阶但非等价的无穷小.8.设0x时,12arctanln1xxx与ncx为等价无穷小,求n,c的值.9.(97-3)设函数561cos20()sind,()56xxxfxttgx,则当0x时,()fx是()gx的(A)低阶无穷小.(B)高阶无穷小.(C)等价无穷小.(D)同阶但不等价的无穷小.10.(04-1;2)把0x时的无穷小量223000cosd,tand,sindxxxtttttt排列起来,使排在后面的是前一个的高阶无穷小量,则正确的排列次序是(A),,.(B),,.(C),,.(D),,.11.(93-1)设sin20()sindxfxtt,34()gxx...