25高数强化(8)主讲武忠祥教授8导数的应用、方程的根及函数不等式举例P70-P81二.常考题型方法与技巧题型一函数的单调性、极值及最值题型二曲线的凹向、拐点、渐近线及曲率题型三方程根的存在性及个数题型四证明函数不等式题型五微分中值定理有关的证明题25武忠祥考研题型一函数的单调性、极值与最值2212de)()(xtttxxf)(xf),(,dede)(2222112xtxttttxxf,de2e2e2de2)(2244221331xtxxxttxxxtxxf【例1】求函数的单调区间与极值.的定义域为,由于【解】)(xf1,0x所以的驻点为.列表讨论如下:)(xf)0,1(),1()1,(因此,的单调增加区间为及间为,单调减少区)1,0(0)1(f).e1(21de)0(1102ttft及;极小值为,极大值为25武忠祥考研)(xfy06223yxxyy)(xf【例2】设函数由方程确定,求的极值.06223yxxyyx0223222yxxyyxyyyy【解】方程两端对求导得(1),0y,022xyy,2,0xyy令得由此可得,0yxy2,0663x显然不满足原方程,将代入原方程得,2)1(,10fx.0)1(f解得x042224362222yxyxyyxyyxyyyyyy对(1)式两端再对求导得,2)1(,1fx0)1(f.094)1(f将代入上式得25武忠祥考研.1||)(lim,0)0(0xxffx)(xf【例3】设有二阶连续导数,且则25武忠祥考研))0(,0(f)(xfy是曲线的拐点;)(xf)0(f(B)是的极小值;)0(f)(xf))0(,0(f)(xfy不是的极值,也不是曲线的拐点.)(xf)0(f(A)是的极大值;(C)(D),01)(lim0xxfx0x,0)(xxf,0)(xf)(xf【解1】由于则在的某去心邻域内即从而单调增,又,0)0(f故选(B).)(xf,1)()1(2)()1(1xexfxxfx)1(aax1x【例4】设二阶导数连续,且1)若是极值点时,是极小值点还时极大值点?是极值点时,是极大值点还是极小值点?2)若ax,0)(afaeafaafa11)()1(2)()1(11)(1aeafa【解】1)由于为极值点,则)1(a0)(xfax则在取极小值.xexfxxfx11)()1(2)()1(11)(2)(1xexfxfx2)由知,111lim)(lim2)(lim1111xexfxfxxxx,01)1(f则25武忠祥考研25武忠祥考研)(xf0)()()(lim20000ahxfxfhxfh)(xf0x【例5】设二阶可导,且试讨论在点的极值.0)()()(lim20000ahxfxfhxfh,0)(...