1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司重难点突破12双切线问题的探究目录双切线问题,就是过一点做圆锥曲线的两条切线的问题,解决这一类问题我们通常用同构法.解题思路:①根据曲线外一点设出切线方程.②和曲线方程联立,求出判别式.③整理出关于双切线斜率的同构方程.④写出关于的韦达定理,并解题.题型一:定值问题例1.(2023·河南·高三竞赛)已知抛物线C:与直线l:没有公共点,P为直线l上的动点,过P作抛物线C的两条切线,A、B为切点.2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司(1)证明:直线AB恒过定点Q;(2)若点P与Q的连线与抛物线C交于M、N两点,证明:.例2.(2023·高二单元测试)已知抛物线C:的焦点F与椭圆的右焦点重合,点M是抛物线C的准线上任意一点,直线MA,MB分别与抛物线C相切于点A,B.(1)求抛物线C的标准方程及其准线方程;(2)设直线MA,MB的斜率分别为,,证明:为定值.例3.(2023·贵州贵阳·校联考模拟预测)已知坐标原点为,抛物线为与双曲线在第一象限的交点为,为双曲线的上焦点,且的面积为3.(1)求抛物线的方程;(2)已知点,过点作抛物线的两条切线,切点分别为,,切线,分别交轴于,,求与的面积之比.变式1.(2023·安徽合肥·高三合肥一中校联考开学考试)已知抛物线(为常数,).点是抛物线上不同于原点的任意一点.3原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司(1)若直线与只有一个公共点,求;(2)设为的准线上一点,过作的两条切线,切点为,且直线,与轴分别交于,两点.①证明:②试问是否为定值?若是,求出该定值;若不是,请说明理由.变式2.(2023·河南信阳·信阳高中校考三模)已知抛物线上一点到焦点的距离为3.(1)求,的值;(2)设为直线上除,两点外的任意一点,过作圆的两条切线,分别与曲线相交于点,和,,试判断,,,四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.题型二:斜率问题例4.(2023·全国·高三专题练习)已知椭圆C:=1(a>b>0)的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2.4原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司(1)求椭圆C的方程;(2)设圆T:(x-2)2+y2=,过椭圆的上顶点M作圆T的两条切...