1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司重难点突破10利用导数解决一类整数问题目录利用导数解决一类整数问题常见技巧有:1、分离参数、分离函数、半分离2、直接限制法3、虚设零点4、必要性探路题型一:整数解问题之分离参数、分离函数、半分离例1.(2023·贵州·校联考一模)已知.(1)讨论的单调性;(2)若对恒成立,求整数a的最小值.【解析】(1)的定义域为,(ⅰ)当时,,∴在上单调递增;(ⅱ)当时,令,令,∴当时,在上单调递增;2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司当时,在上单调递增,在上单调递减.(2)由,可得:, ,∴原命题等价于对恒成立.令,∴,令,∴,∴在上单调递增.又,故存在唯一的,使得.当时,,∴,∴在上单调递增,当时,,∴,∴在上单调递减.∴,∴时,恒成立.∴,又,∴a的最小整数值为2.例2.(2023·四川广安·广安二中校考模拟预测)已知函数.(1)若函数在上有两个零点,求实数的取值范围;(2)当时,关于的不等式恒成立,求整数的最小值.【解析】(1),,当时,,当时,,则在上单调递减,在上单调递增,若在上有两个零点,则解得,故的取值范围是3原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司(2),即,在时恒成立,令,,当时,,当时,,则在上单调递减,在上单调递增,故,即,当且仅当时等号成立,令,,当时,,当时,,则在单调递增,在上单调递减,,即,当且仅当时等号成立,而时,,故,当时,不等式为,而时满足题意,故整数的最小值为例3.(2023·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知函数.(1)讨论函数的单调性;(2)若为整数,且恒成立,求的最大值.【解析】(1)的定义域为,.当时,,则在上单调递增;当时,解,即,得(舍去负值);解,即,得,所以在上单调递增;解,即,得,所以在上单调递减.综上所述,当时,在上单调递增;当时,在上单调递增,在上单调递减.(2)由已知可得,恒成立,,4原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司即在上恒成立.令,则只需即可.,令,在上恒成立,所以单调递增.且,,所以,,使得,且当时,,当时,.即,使得,且当时,,在上单调递减;当时,,在上单调递增.所以,在处取得唯一极小值,也是最...