1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司重难点突破11圆锥曲线存在性问题的探究目录解决存在性问题的技巧:(1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其他情况均成立.(2)假设法:先假设存在,推证满足条件的结论.若结论正确,则存在;若结论不正确,则不存在.题型一:存在点使向量数量积为定值例1.(2023·甘肃天水·高二天水市第一中学校考期末)已知椭圆E的中心在原点,焦点在x轴上,椭圆的左顶点坐标为,离心率为.求椭圆E的方程;过点作直线l交E于P、Q两点,试问:在x轴上是否存在一个定点M,使为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司例2.(2023·山西大同·高二统考期末)已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.(1)求椭圆的方程;(2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出的坐标及定值;若不存在,请说明理由.例3.(2023·重庆渝北·高二重庆市松树桥中学校校考阶段练习)已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,,短轴长为.点在椭圆上,且满足的周长为6.(I)求椭圆的方程;(Ⅱ)过点的直线与椭圆相交于,两点,试问在轴上是否存在一定点,使得恒为定值?若存在,求出该点的坐标;若不存在,请说明理由.变式1.(2023·全国·高三专题练习)已知椭圆的离心率为,椭圆经过点.(1)求椭圆的方程;(2)过点作直线交于两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由.变式2.(2023·辽宁锦州·统考模拟预测)已知为双曲线的左、右焦点,的离心率为为上一点,且.(1)求的方程;3原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司(2)设点在坐标轴上,直线与交于异于的两点,且点在以线段为直径的圆上,过作,垂足为,是否存在点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.变式3.(2023·山西大同·统考模拟预测)已知椭圆的离心率为,且直线是抛物线的一条切线.(1)求椭圆的方程;(2)过点的动直线交椭圆于两点,试问:在直角坐标平面上是否存在...