第31练函数模型的应用一、单选题1.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是()A.y=0.9576B.y=(0.9576)100xC.y=xD.y=1-0.0424【答案】A【解析】由题意可知y=(95.76%),即y=0.9576.2.有一组实验数据如下表所示:t1.993.04.05.16.12u1.54.047.51218.01则能体现这些数据关系的函数模型是()A.u=log2tB.u=2t-2C.u=D.u=2t-2【答案】C【解析】可以先画出散点图,并利用散点图直观地认识变量间的关系,选择合适的函数模型来刻画它,散点图如图所示.由散点图可知,图象不是直线,排除选项D;图象不符合对数函数的图象特征,排除选项A;当t=3时,2t-2=23-2=6,排除B,故选C.3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图像大致为()ABCD【答案】D【解析】设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),函数为对数函数,所以函数y=f(x)的图像大致为D中图像,故选D.4.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30min,组装第A件产品用时15min,那么c和A的值分别是()A.75,25B.75,16C.60,25D.60,16【答案】D【解析】由题意知,组装第A件产品所需时间为=15,故组装第4件产品所需时间为=30,解得c=60.将c=60代入=15,得A=16.]5.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A.300只B.400只C.600只D.700只【答案】A【解析】将x=1,y=100代入y=alog2(x+1)得,100=alog2(1+1),解得a=100.所以x=7时,y=100log2(7+1)=300.]6.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进去的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a·e-kt.已知新丸经过50天后,体积变为a.若一个新丸体积变为a,则需经过的天数为()A.125B.100C.75D.50【答案】C【解析】由已知,得a=a·e-50k,∴e-k=.设经过t1天后,一个新丸体积变为a,则a=a·e-kt1,∴=(e-k)t1=,∴=,t1=75.二、多选题7.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少,则使产品达到市场要...