第1页共6页原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司第2章直线和圆的方程知识梳理一、直线的倾斜角、斜率与方程1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们以x轴为基准,x轴正向与直线l向上的方向之间所成的角α叫做直线l的倾斜角;(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0°;(3)范围:直线的倾斜角α的取值范围是{α|0°≤α<180°}.2.直线的斜率(1)定义:我们把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tan__α.(2)计算公式①经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率k=.②设P1(x1,y1),P2(x2,y2)(其中x1≠x2)是直线l上的两点,则向量P1P2=(x2-x1,y2-y1)以及与它平行的向量都是直线的方向向量.若直线l的斜率为k,它的一个方向向量的坐标为(x,y),则k=.3.直线方程的五种形式名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点=与两坐标轴均不垂直的直线截距式纵、横截距+=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0所有直线第2页共6页原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司(A2+B2≠0)常用结论;1.直线的倾斜角α和斜率k之间的对应关系:α00<α<<α<πk0k>0不存在k<02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.二、直线的交点坐标与距离公式1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.(2)两条直线垂直如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.直线的交点与直线的方程组成的方程组的解的关系(1)两直线的交点点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组的解,解这个方程组就可以得到这两条直线的交点坐标.(2)两直线的位置关系方程组的解一组无数组无解直线l1与l2的公共点的个数一个无数个零个直线l1与l2的位置关系相交重合平行3.距离公式第3页共6页原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司(1)两点间的距离公式平面上任意两点P1(x1,y1)...