8.4.1平面复习引入前面我们初步认识了简单几何体的组成元素,知道了顶点、棱(直线段)、平面多边形是构成棱柱、棱锥等多面体的基本元素.我们以直观感知的方式认识了这些基本元素之间的相互关系,从而得到了多面体的一些结构特征.为了进一步认识立体图形的结构特征,需要对点、直线、平面之间的位置关系进行研究.本节我们先研究平面及其基本性质,在此基础上,研究空间点、直线、平面之间的位置关系.新知探索在初中,我们已经对点和直线有了一定的认识,知道它们都是由现实事物抽象得到的.生活中也有一些物体给我们以平面的直观感觉,如课桌面、黑板面、平静的水面等.几何里所说的“平面”就是从这样的一些物体中抽象出来的.类似于直线向两端无限延伸,平面是向四周无限延展的.与画出直线的一部分来表示直线一样,我们也可以画出平面的一部分来表示平面.我们常用矩形的直观图,即平行四边形表示平面.如图,当平面水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.新知探索下面,我们来研究平面的基本性质.新知探索思考1:我们知道,两点可以确定一条直线,那么几点可以确定一个平面?在日常生活中,我们常常可以看到这样的现象:自行车用一个脚架和两个车轮着地就可以“站稳”,三脚架的三脚着地就可以支撑照相机.由这些事实和类似经验,可以得到下面的基本事实:新知探索基本事实1过不在一条直线上的三个点,有且只有一个平面.新知探索在实际生活中,我们有这样的经验:如果一根直尺边缘上的任意两点在桌面上,那么直尺的整个边缘就落在了桌面上.上述经验和类似的事实可以归纳为以下基本事实:基本事实2如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.新知探索利用基本事实2,可以判断直线是否在平面内.新知探索新知探索想象三角尺所在的无限延展的平面,用它去“穿透”课桌面.可以想象,两个平面相交于一条直线.教室里相邻的墙面在地面的墙角处有一个公共点,这两个墙面相交于过这个点的一条直线.由此我们又得到一个基本事实:基本事实3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.新知探索基本事实3告诉我们,如果两个平面有一个公共点,那么这两个平面一定相交于过这个公共点的一条直线.两个平面相交成一条直线的事实,使我们进一步认识了平面的“平”和“无限延展”.在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分...