1FFT的DSP实现简介:快速傅里叶变换是一种高效实现离散傅里叶变换的的快速算法,是数字信号处理中最为重要的工具之一,它在声学、语音、电信和信号处理等领域有着广泛的应用。一.设计目的:1.加深对DFT算法原理和基本性质的理解;2.熟悉FFT的算法原理和FFT子程序的算法流程和应用;3.学习用FFT对连续信号和时域信号进行频谱分析的方法;4.学习DSP中FFT的设计和编程思想;5.学习使用CCS的波形观察窗口观察信号波形和频谱情况。二.设计内容:用DSP汇编语言及C语言进行编程,实现FFT运算,对输入信号进行频谱分析。三.设计原理:1.离散傅里叶变换DFT:对于长度为N的有限长序列x(n),它的离散傅里叶变换(DFT)为X(k)=∑n=0∞x(n)∗WN-nk,k=0,1,2……N-1(1)2式中,WN=e-j*2π/N,称为旋转因子或蝶形因子。从DFT的定义可以看出,在x(n)为复数序列的情况下,对某个k值,直接按(1)式计算X(k)只需要N次复数乘法和(N-1)次复数加法。因此,对所有N个k值,共需要N2次复数乘法和N(N-1)次复数加法。对于一些相当大有N值(如1024点)来说,直接计算它的DFT所需要的计算量是很大的,因此DFT运算的应用受到了很大的限制。2.快速傅里叶变换FFT旋转因子WN有如下的特性。对称性:WNk+N/2=-WNk周期性:WNn(N-k)=WNk(N-n)=WN-nk利用这些特性,既可以使DFT中有些项合并,减少了乘法积项,又可以将长序列的DFT分解成几个短序列的DFT。FFT就是利用了旋转因子的对称性和周期性来减少运算量的。FFT的算法是将长序列的DFT分解成短序列的DFT。例如:N为偶数时,先将N点的DFT分解为两个N/2点的DFT,使复数乘法减少一半:再将每个N/2点的DFT分解成N/4点的DFT,使复数乘又减少一半,继续进行分解可以大大减少计算量。最小变换的点数称为基数,对于基数为2的FFT算法,它的最小变换是2点DFT。一般而言,FFT算法分为按时间抽取的FFT(DITFFT)和按频率抽取的FFT(DIFFFT)两大类。DIFFFT算法是在时域内将每一级输入序列依次按奇/偶分成2个短序列进行计算。而3DIFFFT算法是在频域内将每一级输入序列依次奇/偶分成2个短序列进行计算。两者的区别是旋转因子出现的位置不同,得算法是一样的。在DIFFFT算法中,旋转因子WNk出现在输入端,而在DIFFFT算法中它出现在输入端。假定序列x(n)的点数N是2的幂,按照DIFFFT算法可将其分为偶序列和奇序列。偶序列:x(2r)=x1(r)奇序列:x(2r+1)=x2(r)其中:r=0,1,2,…,N/2-1则x(n)的DFT表示为X(k)=∑r=0N2−1x(2r)WN2rk+∑r=0N2−1x(...