习题课导数的几何意义及应用高频考点一求切线方程[例1](2018·全国卷Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x[解析]法一: f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又 f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.法二:易知f(x)=x3+(a-1)x2+ax=x[x2+(a-1)x+a], f(x)为奇函数,∴函数g(x)=x2+(a-1)x+a为偶函数,∴a-1=0,解得a=1,∴f(x)=x3+x,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.[答案]D[方法技巧]求曲线的切线方程,曲线y=f(x)在点P(x0,f(x0))处的切线方程是y-f(x0)=f′(x0)(x-x0);求过某点M(x1,y1)的切线方程时,需设出切点A(x0,f(x0)),则切线方程为y-f(x0)=f′(x0)(x-x0),再把点M(x1,y1)代入切线方程,求x0.[集训冲关]已知函数f(x)=cosxex,则函数f(x)的图象在点(0,f(0))处的切线方程为()A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0解析: f(x)=cosxex,∴f′(x)=-sinx-cosxex,∴f′(0)=-1,f(0)=1,即函数f(x)的图象在点(0,1)处的切线斜率为-1,∴函数f(x)的图象在点(0,f(0))处的切线方程为y=-x+1,即x+y-1=0.故选B.答案:B高频考点二求切点坐标[例2]已知函数f(x)=xlnx在点P(x0,f(x0))处的切线与直线x+y=0垂直,则切点P(x0,f(x0))的坐标为________.[解析] f(x)=xlnx,∴f′(x)=lnx+1,由题意得f′(x0)·(-1)=-1,即f′(x0)=1,∴lnx0+1=1,lnx0=0,∴x0=1,∴f(x0)=0,即P(1,0).[答案](1,0)[方法技巧]求切点坐标,其思路是先求函数的导数,然后让导数值等于切线的斜率,从而得出切线方程或求出切点坐标.[集训冲关][多选]若曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标可能为()A.(1,3)B.(-1,3)C.(-2,-3)D.(1,-3)解析:f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选A、B.答案:AB高频考点三两曲线的公切线问题[例3]已知曲线f(x)=x3+ax+14在x=0处的切线与曲线g(x)=-lnx相切,则a的值为________.[解析]由f(x)=x3+ax+14,得f′(x)=3x2+a. f′(0...