第1页共4页课时跟踪检测(九)条件概率1.已知P(B|A)=,P(AB)=,则P(A)等于()A.B.C.D.解析:选C由P(AB)=P(A)P(B|A),可得P(A)=.2.将两枚质地均匀的骰子各掷一次,设事件A={两个骰子点数互不相同},B={出现一个5点},则P(B|A)=()A.B.C.D.解析:选A 出现点数互不相同的共有n(A)=6×5=30种,出现一个5点共有n(AB)=5×2=10种,∴P(B|A)==.3.下列说法正确的是()A.P(B|A)<P(AB)B.P(B|A)=是可能的C.0<P(B|A)<1D.P(A|A)=0解析:选B由条件概率公式P(B|A)=及0<P(A)≤1知P(B|A)≥P(AB),故A错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=,故B正确;由于0≤P(B|A)≤1,P(A|A)=1,故C,D错误,故选B.4.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.B.C.D.解析:选C设“开关第一次闭合后出现红灯”为事件A,“第二次闭合后出现红灯”为事件B,则由题意可得P(A)=,P(AB)=,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P(B|A)===.故选C.5.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为()A.0.72B.0.8C.0.9D.0.5解析:选A在种子发芽的条件下,成长为幼苗,所以为条件概率问题.设“种子发芽”为事件A,“种子成长为幼苗(发芽,又成活为幼苗)”为事件AB,则发芽后的幼苗成活率为P(B|A)=0.8,P(A)=0.9.根据条件概率公式得P(AB)=P(B|A)·P(A)=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.6.某项射击游戏规定:选手先后对两个目标进行射击,只有两个目标都射中才能过关.第2页共4页某选手射中第一个目标的概率为0.8,继续射击,射中第二个目标的概率为0.5,则这个选手过关的概率为________.解析:记“射中第一个目标”为事件A,“射中第二个目标”为事件B,则P(A)=0.8,P(B|A)=0.5.所以P(AB)=P(B|A)·P(A)=0.8×0.5=0.4,即这个选手过关的概率为0.4.答案:0.47.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为________.解析:设第一支取好晶体管为事件A,第二支取好晶体管为事件B,则P(A)==,P(AB)=P(A)·P(B)=×=,则P(B|A)==.答案:8.从编号为1,2,…,10的10个大小、颜色...