4•�OŽ–g•K2022c3�11F¦e�4•£1¤limn→∞(n!)1n2£2¤limn→∞[1+(−1)nsin(π√1+n2)]n£3¤limx→+∞[(x3+12x−tan1x)e1x−√1+x6]£4¤limx→0+[ln(xlna)·ln(lnaxlnxa)],(a>1)£5¤limx→0[nex+e2x+···+enx]ex,Ù¥n´‰½���ê£6¤limn→∞[(n+1)a−na],Ù¥a∈(0,1)£7¤�¼êf(x)3x=1?Œ�§…2f′(1)=f(1)=1,¦limn→∞[f(1+1n)]n1世纪高教在线数学与逻辑组出品咨询联系QQ:3486586079答案及思路见下页4•�OŽ–g•K‰Y2022c3�11F¦e�4•£1¤limn→∞(n!)1n2=1>£2¤limn→∞[1+(−1)nsin(π√1+n2)]n=eπ2>£J«µ(−1)nsin(π√1+n2)=sin(π√1+n2−n𤤣3¤limx→+∞[(x3+12x−tan1x)e1x−√1+x6]=+∞>£J«µ-t=1x¤£4¤limx→0+[ln(xlna)·ln(lnaxlnxa)],(a>1)=2lna>£5¤limx→0[nex+e2x+···+enx]ex,Ù¥n´‰½���ê=e−n+12e>£J«µ¦�ê4•¤£6¤limn→∞[(n+1)a−na],Ù¥a∈(0,1)=0>£J«µY%OK¤£7¤�¼êf(x)3x=1?Œ�§…2f′(1)=f(1)=1,¦limn→∞[f(1+1n)]n=e12>£J«µ�ê½Â¤1世纪高教在线数学与逻辑组出品咨询联系QQ:3486586079