3.3二次函数y=ax2的图象与性质(1)教材分析二次函数的图象——抛物线,也是人们最为熟悉的曲线之一.喷泉的水流,标枪的投掷等都形成抛物线路径.同时,抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥,抛物线型隧道等.本节课将研究最简单的二次函数y=x2与y=-x2的图象及性质.在教学中,让学生利用描点法作出y=x2的图象,并能根据图象经过大家的合作交流归纳总结出二次函数y=x2的性质.在此基础上猜想y=-x2的图象及性质,再进行有关验证.通过讨论最简单的二次函数y=±x2的图象的作法,引出抛物线的概念,在此基础上初步归纳这类抛物线的性质.本节的内容主要由学生自己思考,动手操作,合作交流得出结论,教师只给以引导,充分体现教师引导,学生学的教学理念.教学目标(一)教学知识点1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.(二)能力训练要求1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.(三)情感与价值观要求1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.教学重点1.能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同.1/6教学难点经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现“探索——经验——运用”的思维过程.教学方法探索——总结——运用法.教具准备投影片四张第一张:(记作§3.3.1A)第二张:(记作§3.3.1B)第三张:(记作§3.3.1C)第四张:(记作§3.3.1D)教学过程Ⅰ.创设问题情境,引入新课[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线,一般的一次函数的图象是不过原点的一条直线,反比例函数的图象是两条双曲线.上节课我们学习了二次函数的一般形式为y=ax2+bx+c(其...