教师备课笔记上课日期月日星期教学课题4.3相似三角形课型课堂形式纵横□/小组□/马蹄□/其它□人数教学目标1.了解相似三角形的概念,会表示两个三角形相似.2.能运用相似三角形的概念判断两个三角形相似.3.理解“相似三角形的对应角相等,对应边成比例”的性质.重点本节教学的重点是相似三角形的概念难点在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点;教学辅助过程教学内容学生活动教师活动备注一、创设情境,导入新课1.课件出示:①国旗上的☆,②同一底片不同尺寸的照片.以上图形之间可以通过怎样的图形变换得到?2.经过相似变换后得到的像与原像称为相似图形.那么将一个三角形作相似变换后所得的像与原像称为相似三角形。二、合作学习,探索新知1.合作学习如图1,在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A′B′C′(点A′、B′、C′分别对应点A、B、C).问题讨论1:△A′B′C′与△ABC对应角之间有什么关系?问题讨论2:△A′B′C′与△ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例.2.由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形。(2)表示:相似用符号“∽”来表示,读作“相似于”如△A′B′C′与△ABC相似,记做“△A′B′C′∽△ABC”.(3)定义的几何语言表述:3.结合定义探求性质(1)性质:相似三角形的对应角相等,对应边成比例(由学生根据定义得出,理解定义的双重性,既可以用来判定两个三角形相似,同时,其本身又是三角形相似的一个性质)(2)相似比(相似系数):相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)注意:求两个相似三角形的相似比,应注意这两个三角形的前后顺序.4.问题探究:问题一:两个直角三角形一定相似吗?为什么?问题二:两个等腰三角形一定相似吗?为什么?问题三:两个等腰直角三角形一定相似吗?为什么?问题四:两个等边三角形一定相似吗?为什么?问题五:两个全等三角形一定相似吗?为什么?变形:相似比为1的两个三角形全等吗?序号问题六:如果两个全等三角形中的一个与第三个三角形相似,那么这两个全等三角形的另一个也与第三个三角形相似吗?为什么?(有学生同桌或小组合作讨论,说明原因或举反例说明)提示说明:本节课要说明两个三角形相似,应结合定...