你知道勾股定理都有哪些证明方法吗?你知道勾股定理都有哪些证明方法吗?第三种类型:以刘徽的“青朱出入图”为代表,“无字证明”.第三种类型:以刘徽的“青朱出入图”为代表,“无字证明”.第一种类型:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;第二种类型:以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明;方法一:三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明.方法一:三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明.2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就.第一种类型:第一种类型:cba2214().2cabba22222.cabbaba222.cab由面积计算,得展开,得化简,得aabbcc方法二:美国第二十任总统伽菲尔德的证法,被称为“总统证法”.方法二:美国第二十任总统伽菲尔德的证法,被称为“总统证法”.如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得化简,得如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得化简,得2111()()2.222abbaabc222.abc第一种类型:第一种类型:据传是当年毕达哥拉斯发现勾股定理时做出的证明。据传是当年毕达哥拉斯发现勾股定理时做出的证明。将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞.则图1和图2中的白色部分面积必定相等,所以c2=a2+b2将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞.则图1和图2中的白色部分面积必定相等,所以c2=a2+b2图1图2方法三方法三第一种类型:第一种类型:如图,过A点画一直线AL使其垂直于DE,并交DE于L,交BC于M。通过证明△BCFBDA≌△,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与矩形MLEC也等积,于是推得如图,过A点画一直线AL使其垂直于DE,并交DE于L,交BC于M。通过证明△BCFBDA≌△,利用三角形面积与长方形面积的关系,...