§1.4有理数的大小比较教学目标:1、掌握有理数大小的比较法则:数轴上表示的两个有理数,右边的数总比左边的数大;正数都大于零,负数都小于零;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.2、会比较有理数的大小,并能正确地使用“>”或“<”号连结.3、初步会进行有理数大小比较的推理和书写.教学重、难点:教学重点:有理数的大小比较法则.教学难点:1、两个负数比较大小的绝对值法则.2、例2第(3)题中两个负分数比较大小的推理过程.教学设计过程:一、创设情境:(多媒体演示)下面是一组图片,表示某一天我国5个城市的最低气温.(见P18图1-10)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”):广州(10℃)上海(0℃);上海(0℃)北京(-10℃);武汉(5℃)广州(10℃);哈尔滨(-20℃)武汉(5℃);北京(-10℃)哈尔滨(-20℃).同学们的答案是否正确呢?这就需要数学知识“有理数的大小比较”(点出课题).二、探究新知:把表示上述5个城市最低气温的数表示在数轴上.观察这5个数在数轴上的位置,你发现了什么?温度的高低与相应的数在数轴上的位置有什么关系?(教师与学生一起合作完成).(结论:在数轴表示的数的位置与气温的高低有关.气温越高,在数轴上表示的数就越靠右.)一般地,我们有:在数轴上表示的两个数,右边的数总比左边的数大.(教师板书,学生记忆)1/3例1在数轴上表示数5,0,-4,-1,并比较它们大小,将它们按从小到大的顺序用“<”号连接.(师生合作完成)解:如图,将它们按从小到大的顺序排列为:-4<-1<0<5.我们知道:有理数可分为正数、负数和零三类,(教师提出问题)那么两个有理数的大小比较有哪几种情况呢?(两个有理数的大小比较有如下几种情况:一正一零;一负一零;两负;一正一负;两正.)结合例1,请同学们观察数轴思考一下:正数、零和负数三者的大小关系如何?正数大于零,负数小于零,正数大于负数.(教师板书,学生记忆)那么,同号(同正或同负)的两数的大小关系又如何呢?(若学生有困难,则提示:求例1中同号(同正或同负)各数的绝对值,并比较它们的大小,然后说明它们的大小与它们的绝对值的大小有什么关系?)引导学生归纳得出:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.(教师板书,学生记忆).例2比较下列每对数的大小,并说明理由:(1)1与-10;(2)-0.001与0;(3).解:(1)1>10(正数大于一切...