第2课时一元一次方程的解法(2)【知识与技能】掌握分母中含有小数的一元一次方程的解法,灵活运用解方程的步骤解方程.【过程与方法】通过练习使学生灵活的解一元一次方程.【情感态度】发展学生的观察、计算、思维能力.【教学重点】使学生灵活的解一元一次方程.【教学难点】使学生灵活的解一元一次方程.一、情境导入,初步认识通过前面的学习,得出了解一元一次方程的一般步骤,任何一个一元一次方程都可以通过去分母、去括号、移项、合并同类项等步骤转化成x=a的形式.因此当一个方程中的分母含有小数时,应首先考虑化去分母中的小数,然后再求解这个方程.【教学说明】复习解一元一次方程的步骤,为本节课的教学作准备,并引出本节课的内容.二、思考探究,获取新知1.解方程分析:此方程的分母中含有小数,通常将分母中的小数化为整数,然后再按解方程的一般步骤求解.利用分数的基本性质,将方程化为:去分母,得6(9x+2)-14(3+2x)-21(3x+14)=42,去括号,得54x+12-42-28x-63x-294=42,移项,得54x-28x-63x=42-12+42+294,合并同类项,得-37x=366,系数化为1得x=-366/37.【教学说明】解此方程时一定要注意区别:将分母中的小数化为整数根据的是分数的基本性质,分数的分子和分母都乘以(或除以)同一个不等于零的数,分数的值不变,所以等号右边的1不变.去分母是方程的两边都乘以各分母的最小公倍数42,所以等号右边的1也要乘以42,才能保证所得结果仍成立.2.解下列方程:(1)3(2x-1)+4=1-(2x-1);分析:我们已经学习了解方程的一般步骤,具体解题时,要观察题目的结构特征,灵活应用步骤.第(1)小题中可以把(2x-1)看成一个整体,先求出(2x-1)的值,再求x的值;第(2)小题,应注意到分子都是4x+3,且1/6+1/2+1/3=1,所以如果把4x+3看成一个整体,则无需去分母.解:(1)3(2x-1)+4=1-(2x-1),3(2x-1)+(2x-1)=1-4,4(2x-1)=-3,2x-1=-3/4,2x=1/4,x=1/8.(1/6+1/2+1/3)(4x+3)=1;4x+3=1;4x=-2;x=-1/2.【教学说明】解方程时,要注意观察分析题目的结构,根据具体情况合理安排解题的步骤,注意简化运算,这样可以提高解题速度,培养观察能力和决策能力.三、运用新知,深化理解【教学说明】强调学生在解题之前一定要先观察方程的特点,再选择适当的方法,是先去中括号、还是去小括号;是先去分母、还是先去括号等.【答案】1.分析:这个方程的分母含有小数,可依据分数的基本性质,先把分母化为整数再去分母后求解.解:原方程可化为去分母,得3(4x+21)...