2.2直线、平面平行的判定及其性质2.2.1-2.2.2直线与平面平行、平面与平面平行的判定..本课件在复习直线与平面的位置关系和平面与平面的位置关系的基础上,以常见的转动门动画演示引入直线与平面的平行的位置关系。以学生探究为主,运用几何画板动画展示直线与平面平行的条件,让学生自己探索出线面平行的判定定理;再通过对平面与平面平行得到线面平行,并引导学生探究如何由直线与平面平行判定出两个平面平行,从直线的条数的增加和位置关系的确定,逐步探究出判断两个平面平行的条件,得到平面与平面平行的判定定理。本节课主要运用转化思想,线面平行转化为线线平行,把面面平行转化为线面平行,把空间问题转化为平面问题。同时运用几何画板展示平面与直线的位置关系和动画简洁明了详尽,做到直观生动活泼形象,增强了学生的空间想象能力。点、线、面位置关系直线与直线直线与平面平面与平面平行相交异面在面内平行相交平行相交课前复习直线与平面有几种位置关系?其中平行是一种非常重要的关系,不仅应用较多,而且是学习平面和平面平行的基础.有三种位置关系:在平面内,相交、平行.转门转动过程中与门边的位置关系平行吗?为什么平行呢?课本的对边是平行的,将课本的一边紧贴桌面,沿着这条边转动课本,课本的上边缘与桌面所在平面具有什么样的位置关系?怎样判定直线与平面平行呢?直线与平面平行的判定几何画板演示图形直线与平面平行的判定定理1A1B1D1CÖ±ÏßÓëÆ½ÃæÆ½ÐÐ若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.ba////ababa线线平行线面平行直线与平面平行的判定定理AEFBCD例1.空间四边形ABCD中,E,F分别为AB,AD的中点,求证:直线EF与平面BCD平行.证明:如右图,连接BD,∴EF∥平面BCD.∴EF∥BD,又EF平面BCD,BD平面BCD,在△ABD中,E,F分别为AB,AD的中点,即EF为中位线.典例展示【例2】如图,两个完全相等的正方形ABCD和ABEF不在同一平面内,点M、N分别在它们的对角线AC、BF上,且CM=BN.求证:MN∥平面BCE.【证明】连结AN并延长交BE于G点. AF∥BE,∴NAGNNFBN. 正方形ABCD与正方形ABEF全等,∴AC=BF.CM=BN ,MA=NF∴. NAGNMACM,∴MN∥CG. CG平面BCE,MN平面BCE,∴MN∥平面BCE.练习1.如图,在三棱锥P-ABC中,点O、D分别是AC、PC的中点,求证:OD∥平面PAB.【证明】 点O、D分别是AC、PC的中点,∴OD∥AP. OD平面PAB,AP平面PAB,∴O...