第一章空间几何体1.1空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征学案·新知自解1.通过观察实例,认识棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构.空间几何体1.空间几何体的定义空间中的物体都占据着空间的一部分,若只考虑这些物体的______和______,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫作空间几何体.形状大小2.空间几何体的分类多面体旋转体定义由若干个____________围成的几何体由一个平面图形绕它所在平面内的一条________旋转所形成的____________图形平面多边形定直线封闭几何体相关概念面:围成多面体的各个________;棱:相邻两个面的________;顶点:________的公共点轴:形成旋转体所绕的________多边形公共边棱与棱定直线多面体多面体定义图形及表示相关概念棱柱有两个面互相______,其余各面都是_________,并且每相邻两个四边形的公共边都互相______,由这些面所围成的多面体叫作棱柱如图可记作:棱柱____________A′B′C′D′E′F′底面(底):两个互相______的面;侧面:___________;侧棱:相邻侧面的_________;顶点:侧面与底面的____________平行四边形平行ABCDEF-平行其余各面公共边公共顶点棱锥有一个面是________,其余各面都是有一个公共顶点的________,由这些面所围成的多面体叫作棱锥如图可记作:棱锥____________底面(底):________面;侧面:有公共顶点的各个_____________;侧棱:相邻侧面的________;顶点:各侧面的____________多边形三角形S-ABCD多边形三角形面公共边公共顶点棱台用一个______________的平面去截棱锥,底面与截面之间的部分叫作棱台如图可记作:棱台____________________上底面:原棱锥的______;下底面:原棱锥的______;侧面:其余各面;侧棱:相邻侧面的公共边;顶点:侧面与上(下)底面的公共顶点平行于棱锥底面ABCD-A′B′C′D′截面底面[化解疑难]对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分.1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行解析:由棱柱的定义知,D正确.答案:D2.关于棱台,下列说法正确的是()A.两底面可以不相似B.侧面都...