11.2.1三角形的内角第十一章三角形优翼课件导入新课讲授新课当堂练习课堂小结11.2与三角形有关的角第1课时三角形的内角和八年级数学上(RJ)教学课件学习目标2.会运用三角形内角和定理进行计算.(难点)1.会用平行线的性质与平角的定义证明三角形内角和等于180°.(重点)我的形状最小,那我的内角和最小.我的形状最大,那我的内角和最大.不对,我有一个钝角,所以我的内角和才是最大的.一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.导入新课情境引入我们在小学已经知道,任意一个三角形的内角和等于180°.与三角形的形状、大小无关,所以它们的说法都是错误的.思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180°呢?折叠还可以用拼接的方法,你知道怎样操作吗?锐角三角形测量480720600600+480+720=1800(学生运用学科工具—量角器测量演示)剪拼ABC21(小组合作,讨论剪拼方法。各小组代表板演剪拼过程)视频:剪拼验证内角和定理三角形的三个内角拼到一起恰好构成一个平角.观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?还有其他的拼接方法吗?讲授新课三角形的内角和定理的证明一探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.l验证结论三角形三个内角的和等于180°.求证:∠A+∠B+∠C=180°.已知:△ABC.证法1:过点A作lBC∥,∴∠B=1.∠(两直线平行,内错角相等)∠C=2.∠(两直线平行,内错角相等) ∠2+1+∠∠BAC=180°,∴∠B+∠C+∠BAC=180°.12证法2:延长BC到D,过点C作CEBA∥,∴∠A=1.∠(两直线平行,内错角相等)∠B=2.∠(两直线平行,同位角相等)又 ∠1+2+∠∠ACB=180°,CBAED12CBAEDF证法3:过D作DE∥AC,作DF∥AB.∴∠C=∠EDB,∠B=∠FDC.(两直线平行,同位角相等)∠A+∠AED=180°,∠AED+∠EDF=180°,(两直线平行,同旁内角相补)∴∠A=∠EDF. ∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°.想一想:同学们还有其他的方法吗?思考:多种方法证明三角形内角和等于180°的核心是什么?借助平行线的“移角”的功能,将三个角转化成一个平角.借助平行线的“移角”的功能,将三个角转化成一个平角.CAB12345lACB12345lP6mABCDEC24AB3EQDFPGH1BGC24A3EDFH1试一试:同学们按照上图中的辅助线,给出证明步骤?知识要点在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通...