3.1.4空间向量的正交分解及其坐标表示课时目标1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解基底、基向量及向量的线性组合的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.1.空间向量基本定理(1)设i、j、k是空间三个两两垂直的向量,且有公共起点O,那么,对于空间任一向量p,存在一个______________,使得____________,我们称______,______,______为向量p在i、j、k上的分向量.(2)空间向量基本定理:如果三个向量a,b,c________,那么对空间任一向量p,存在有序实数组{x,y,z},使得________________.(3)如果三个向量a,b,c不共面,那么所有空间向量组成的集合就是___________.这个集合可看作是由向量a,b,c生成的,我们把{a,b,c}叫做空间的一个________,a,b,c都叫做__________.空间中任何三个________的向量都可构成空间的一个基底.2.空间向量的坐标表示若e1、e2、e3是有公共起点O的三个两两垂直的单位向量,我们称它们为____________________,以e1、e2、e3的公共起点O为原点,分别以e1、e2、e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz,那么,对于空间任意一个向量p,由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3,把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作____________.一、选择题1.在以下3个命题中,真命题的个数是()①三个非零向量a,b,c不能构成空间的一个基底,则a,b,c共面;②若两个非零向量a,b与任何一个向量都不能构成空间的一个基底,则a,b共线;③若a,b是两个不共线向量,而c=λa+μb(λ,μ∈R且λμ≠0),则{a,b,c}构成空间的一个基底.A.0B.1C.2D.32.已知O、A、B、C为空间不共面的四点,且向量a=OA+OB+OC,向量b=OA+OB-OC,则与a、b不能构成空间基底的是()A.OAB.OBC.OCD.OA或OB3.以下四个命题中,正确的是()A.若=OA+OB,则P、A、B三点共线B.设向量{a,b,c}是空间一个基底,则{a+b,b+c,c+a}构成空间的另一个基底C.|(a·b)c|=|a|·|b|·|c|D.△ABC是直角三角形的充要条件AB·AC=04.设O-ABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3G,G1若=xOA+yOB+zOC,则(x,y,z)为()A.(,,)B.(,,)C.(,,)D.(,,)5.已知点A在基底{a,b,c}下的坐标为(8,6,4),其中a=i+j,b=j+k,c=k+i,则点A在基底{i,j,k}下的坐标是()A.(12,14,10)B.(10,12,14)C.(...