1.3.1函数的单调性与导数一、选择题1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是()A.b2-4ac>0B.b>0,c>0C.b=0,c>0D.b2-3ac<0【答案】D【解析】 a>0,f(x)为增函数,∴f′(x)=3ax2+2bx+c>0恒成立,∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0.2.函数f(x)=(x-3)ex的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)【答案】D【解析】f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)>0,解得x>2,故选D.3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为()A.C.(-∞,-1)和(1,2)D..4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()【答案】C【解析】当01时xf′(x)>0,∴f′(x)>0,故y=f(x)在(1,+∞)上为增函数,因此否定A、B、D故选C.5.已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0【答案】B【解析】f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),∴x<0时,f′(x)>0,g′(x)<0.6.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)【答案】C【解析】由(x-1)f′(x)≥0得f(x)在上单调递减或f(x)恒为常数,故f(0)+f(2)≥2f(1).故应选C.二、填空题7.函数y=ln(x2-x-2)的单调递减区间为__________.【答案】(-∞,-1)【解析】函数y=ln(x2-x-2)的定义域为(2,+∞)∪(-∞,-1),令f(x)=x2-x-2,f′(x)=2x-1<0,得x<,∴函数y=ln(x2-x-2)的单调减区间为(-∞,-1).8.已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+∞)内恒成立,实数a的取值范围为________.【答案】a≥1【解析】由已知a>在区间(1,+∞)内恒成立.设g(x)=,则g′(x)=-<0(x>1),∴g(x)=在区间(1,+∞)内单调递减,∴g(x)<g(1), g(1)=1,∴<1在区间(1,+∞)内恒成立,∴a≥1.三、解答题9.求证:方程x-sinx=0只有一个根x=0.【解析】设f(x)=x-sinx,x∈(-∞,+∞),则f′(x)=1-cosx>0,∴f(x)在(-∞,+∞)上是单调...