课时跟踪检测(五)函数的单调性与导数层级一学业水平达标1.下列函数中,在(0,+∞)内为增函数的是()A.y=sinxB.y=xexC.y=x3-xD.y=lnx-x解析:选BB中,y′=(xex)′=ex+xex=ex(x+1)>0在(0,+∞)上恒成立,∴y=xex在(0,+∞)上为增函数.对于A、C、D都存在x>0,使y′<0的情况.2.若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是()A.B.C.D.解析:选Cy′=3x2+2x+m,由条件知y′≥0在R上恒成立,∴Δ=4-12m≤0,∴m≥.3.函数y=x4-2x2+5的单调递减区间为()A.(-∞,-1)和(0,1)B.[-1,0]和[1,+∞)C.[-1,1]D.(-∞,-1]和[1,+∞)解析:选Ay′=4x3-4x,令y′<0,即4x3-4x<0,解得x<-1或00, 当x∈(-1,2)时,(x+1)(x-2)<0,∴a<0.答案:(-∞,0)8.若函数y=-x3+ax有三个单调区间,则a的取值范围是.解析: y′=-4x2+a,且y有三个单调区间,∴方程y′=-4x2+a=0有两个不等的实根,∴Δ=02-4×(-4)×a>0,∴a>0.答案:(0,+∞)9.已知函数f(x)=x3+ax2+bx,且f′(-1)=-4,f′(1)=0.(1)求a和b;(2)试确定函数f(x)的单调区间.解:(1) f(x)=x3+ax2+bx,∴f′(x)=x2+2ax+b,由得解得a=1,b=-3.(2)由(1)得f(x)=x3+x2-3x.f′(x)=x2+2x-3=(x-1)(x+3).由f′(x)>0得x>1或x<-3;由f′(x)<0得-3