函数的极值与导数一、教材分析《函数极值>>是高中数学人教版版新教材选修2-2第一章第三节,在此之前我们已经学习了导数,这为我们学习这一节起着铺垫作用。二、教学目标1.教学目标(1)知识技能目标:掌握函数极值的定义,会从几何图形直观理解函数的极值与其导数的关系,增强学生的数形结合意识,提升思维水平;掌握利用导数求可导函数的极值的一般方法及步骤;了解可导函数极值点与=0的逻辑关系;培养学生运用导数的基本思想去分析和解决实际问题的能力.(2)过程与方法目标:培养学生观察、分析、探究、归纳得出数学概念和规律的学习能力。(3)情感与态度目标:培养学生层层深入、一丝不苟研究事物的科学精神;体会数学中的局部与整体的辨证关系.2.教学重点和难点重点:掌握求可导函数的极值的一般方法.难点:(1)为函数极值点与=0的逻辑关系(2)函数的导数与函数最值的区别及联系。3.教学方法与教学手段师生互动探究式教学,遵循“教师为主导、学生为主体”的原则,结合高中学生的求知心理和已有的认知水平开展教学。由于学生对极限和导数的知识学习还十分的有限(大学里还将继续学习),因此教学中更重视的是从感性认识到理性认识的探索过程,而略轻严格的理论证明,教师的主导作用和学生的主体作用都必须得到充分发挥.利用多媒体辅助教学.电脑演示动画图形,直观形象,便于学生观察.幻灯片打出重要结论,清楚明了,节约时间,提高课堂效率.4、教学过程1.引入情景创设学生活动教师活动设计理由利用学生们熟悉的海边体育运动—冲浪,直观形象地引入函数极值的定义.学生感性认识运动员的运动过程,体会函数极值的定义.引导学生想象冲浪的过程引入极值的现象。直观形象,立即抓住学生.2函数极值的定义掌握函数极值的定义.着重理解:“在点附近”的含义。体会:极大值与极小值没有必然关系,极大值可能比极小值还小.教师给出函数极值的定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有﹤,我们就说是函数的一个极大值,记作y极大值=;如果对附近的所有的点,都有﹥,我们就说是函数的一个极小值,记作y极小值=.强调:极值是某一点附近的小区间而言的,是函数的局部性质,在整个定义区间内可能有多个极大值和极小值.3再观察再认再观察冲浪板在波峰波谷时的状态.寻找函数极值点与导数之间的关系.不难得出:(1)曲线在复习可导函数在定义域上的单调性与函数极值的相互关系;教师引导学生寻找函数极值点与导数之间的关系.根据大纲要求及...