章末分层突破[自我校对]①P(A)+P(B)②P(A)+P(B)=1③随机事件的概率1.有关事件的概念(1)必然事件:在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件.(2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件.(3)确定事件:必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件.(4)随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件.(5)事件的表示方法:确定事件和随机事件一般用大写字母A,B,C,…表示.2.对于概率的定义应注意以下几点(1)求一个事件的概率的基本方法是通过大量的重复试验.(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率.(3)概率是频率的稳定值,而频率是概率的近似值.(4)概率反映了随机事件发生的可能性的大小.(5)必然事件的概率为1,不可能事件的概率为0,故0≤P(A)≤1.对一批U盘进行抽检,结果如下表:抽出件数a50100200300400500次品件数b345589次品频率(1)计算表中次品的频率;(2)从这批U盘中任抽一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2000个U盘,至少需进货多少个U盘?【精彩点拨】结合频率的定义进行计算填表,并用频率估计概率.【规范解答】(1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任抽一个是次品的概率约是0.02.(3)设需要进货x个U盘,为保证其中有2000个正品U盘,则x(1-0.02)≥2000,因为x是正整数,所以x≥2041,即至少需进货2041个U盘.[再练一题]1.某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:射击次数n102050100200500击中靶心次数m8194492178455(1)该射击运动员射击一次,击中靶心的概率大约是多少?(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?【解】(1)由题意,击中靶心的频率分别为0.8,0.95,0.88,0.92,0.89,0.91,当射击次数越来越大时,击中靶心的频率在0.9附近摆动,故概率约为0.9.(2)击中靶心的次数大约为300×0.9=270(次).(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化.后30次中,每次击...