1.3.2函数的奇偶性【教学目标】1.理解函数的奇偶性及其几何意义;2.学会运用函数图象理解和研究函数的性质;3.学会判断函数的奇偶性;【教学重难点】教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性的方法与格式【教学过程】(一)创设情景,揭示课题“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?观察下列函数的图象,总结各函数之间的共性.2()fxx()||1fxx21()xxxyyyx-1x0x通过讨论归纳:函数2()fxx是定义域为全体实数的抛物线;函数()||1fxx是定义域为全体实数的折线;函数21()fxx是定义域为非零实数的两支曲线,各函数之间的共性为图象关于y轴对称.观察一对关于y轴对称的点的坐标有什么关系?归纳:若点(,())xfx在函数图象上,则相应的点(,())xfx也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)研探新知函数的奇偶性定义:1.偶函数一般地,对于函数()fx的定义域内的任意一个x,都有()()fxfx,那么()fx就叫做偶函数.(学生活动)依照偶函数的定义给出奇函数的定义.2.奇函数一般地,对于函数()fx的定义域的任意一个x,都有()()fxfx,那么()fx就叫1-1100做奇函数.注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称).3.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.(三)质疑答辩,排难解惑,发展思维.例1.判断下列函数是否是偶函数.(1)2()[1,2]fxxx(2)32()1xxfxx解:函数2(),[1,2]fxxx不是偶函数,因为它的定义域关于原点不对称.函数32()1xxfxx也不是偶函数,因为它的定义域为|1xxRx且,并不关于原点对称.点评:判断函数的奇偶性,先看函数的定义域。变式训练1(1)、xxxf3)((2)、11)1()(xxxxf(3)、2224)(xxxf解:(1)、函数的定义域为R,)()()()(33xfxxxxxf所以)(xf为奇函数(2)、函数的定义域为}11|{xxx或,定义域关于原点不对称,所以)(xf为非奇非偶函数(3)、函数的定义域为{-2,2},)()(0)(xfxfxf,所以函数)(xf既是奇函数又是偶函数例2.判断下列函数的奇偶性...