第1课时勾股定理的逆定理1.掌握勾股定理的逆定理,并能进行简单应用;(难点)2.理解勾股数的定义,探索常用勾股数的规律.(重点)一、情境导入据说几千年前的古埃及人就已经知道,在一根绳子上连续打上等距离的13个结,然后用钉子将第1个与第13个结钉在一起,拉紧绳子,再在第4个和第8个结处各钉上一个钉子,这样围成的三角形中最长边所对的角就是直角,你知道为什么吗?二、合作探究探究点一:勾股定理的逆定理【类型一】利用勾股定理的逆定理判断直角三角形判断满足下列条件的三角形是否是直角三角形.(1)在△ABC中,∠A=20°,∠B=70°;(2)在△ABC中,AC=7,AB=24,BC=25;(3)△ABC的三边长a、b、c满足(a+b)(a-b)=c2.解析:(1)已知两角可以求出另外一个角;(2)使用勾股定理的逆定理验证;(3)将式子变形即可使用勾股定理的逆定理验证.解:(1)在△ABC中, ∠A=20°,∠B=70°,∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形;(2) AC2+AB2=72+242=625,BC2=252=625,∴AC2+AB2=BC2.根据勾股定理的逆定理可知,△ABC是直角三角形;(3) (a+b)(a-b)=c2,∴a2-b2=c2,即a2=b2+c2.根据勾股定理的逆定理可知,△ABC是直角三角形.方法总结:在运用勾股定理的逆定理时,要特别注意找到最大边,定理描述的是最大边的平方等于另外两边的平方和.【类型二】利用勾股定理的逆定理求角的度数如图,点P为等边△ABC内一点,且PA=3,PB=4,PC=5,求∠APB的度数.解析:根据已知条件PA=3,PB=4,PC=5,易知PA2+PB2=PC2,但PA、PB、PC不在同一个三角形中,可构造边长分别为3、4、5的直角三角形来解决问题.解:在△ABC所在的平面内,以A为顶点,AC为边在△ABC外作∠DAC=∠PAB,且AD=AP.连接DC,PD,则△ADC≌△APB,所以DC=PB,∠APB=∠ADC.因为PA=AD,∠PAD=∠BAC=60°,所以△APD为等边三角形.所以PD=PA=AD=3,∠ADP=60°.又因为DC=BP=4,PC=5,且PD2+DC2=32+42=52=PC2,所以△PDC为直角三角形且∠PDC=90°.所以∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°.方法总结:解答本题的关键是构建全等三角形.把长度分别为3、4、5的线段转化为同一个三角形的三边,利用勾股定理的逆定理判断此三角形是直角三角形,进而求出角度.【类型三】利用勾股定理的逆定理解决面积问题如图所示,已知AD是△ABC边BC上的中线,BC=10cm,AC=4cm,AD=3cm,求S△ABC.解析:由△DAC的三边长,易判定该三角形是直...