19.2三角形的内角和外角教学目标1、证明三角形内角和定理,并能简单应用这些结论.2、理解三角形的外角;3、掌握三角形外角的性质,能利用三角形外角的性质解决问题.教学重难点【教学重点】知道作辅助线证明三角形内角和定理,并能简单应用这些结论.掌握三角形的外角和三角形外角的性质.【教学难点】掌握由猜想到证明的过程,理解三角形的外角.课前准备课件、直尺教学过程一、情境创设1、三角形三个内角的和等于多少度?2.你是如何知道的?这个结论正确吗?二、探索活动:1.如何证明三角形内角和等于180°?2.你有没有办法在平面图形中把三角形的三个内角“搬”到一起?分析:添加辅助线,实质是构造新图形,由于学生没有接触过辅助线,实际教学中学生可能采用的方法有:(1)拼图中把一个角移动位置的活动,通过画一个角等于这个角来实现.(2)从已有的对图形的平移、旋转的认识出发,通过角的平移、旋转把三角形的3个内角“搬”到一起.3.你能想办法把∠A、∠B“搬”到相应的位置上吗?三、三角形内角和的证明证明,如图,延长BC至D,以C为顶点,CD为一边做∠B=∠2.21ABCDE则CE∥BA.(同位角相等,两直线平行)∴∠A=∠1.(两直线平行,内错角相等) B,C,D在一条直线上,(所作)又 ∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=∠1+∠2+∠ACB=180°.通过证明我们现在对三角形内角和等于180°不再产生怀疑了,于是得到:三角形内角和定理:三角形三个内角的和等于180°.四、课堂练习1.如果三角形的三个内角都相等,那么每一个角的度数等于_______.2.在△ABC中,若∠A=65°,∠B=∠C,则∠B=_______.3.在△ABC中,若∠C=90°,∠A=30°,则∠B=_______.4.在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=_______.三角形外角五、导入新课如图,△ABC的三个内角是什么?它们有什么关系?2是∠A、∠B、∠C,它们的和是180°.若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?六、三角形外角的概念∠ACD叫做△ABC的外角.也就是三角形一边与另一边的延长线组成的角,叫做三角形的外角.想一想,三角形的外角共有几个?共有六个.注意:每个顶点处有两个外角,它们是对顶角.研究与三角形外角有关的问题时,通常每个顶点处取一个外角.七、三角形外角的性质思考:如图,三角形ABC中,∠A=70°,∠B=60°.∠ACD是三角形ABC的一个外角.能由∠A,∠B求出∠ACD吗?如果能,∠ACD与∠A,∠B有什么关系?...