期末复习(一)相交线与平行线考点一命题【例1】已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个【解析】命题①、③、④显然成立,对于命题②,当a=2、b=-2时,虽然有a≠b,但a2=b2,所以②是假命题,故选C.【方法归纳】要判断一个命题是假命题,只需要举出一个反例即可.和命题有关的试题,多以选择题的形式出现,以判断命题真假为主要题型.1.下列语句不是命题的是()A.两直线平行,同位角相等B.锐角都相等C.画直线AB平行于CDD.所有质数都是奇数考点二相交线中的角【例2】如图所示,O是直线AB上一点,∠AOC=∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说出理由.【分析】根据邻补角互补,得∠AOC与∠BOC的和为180°.利用已知条件,即可求得∠AOC的度数.根据角平分线的定义得∠COD,∠AOD的度数,从而判定出两直线的位置关系.【解答】(1) ∠AOC+∠BOC=180°,∠AOC=∠BOC,∴∠BOC+∠BOC=180°.∴∠BOC=135°.∴∠AOC=45°. OC平分∠AOD,∴∠COD=∠AOC=45°.(2)OD⊥AB.理由如下: ∠COD=∠AOC=45°,∴∠AOD=∠COD+∠AOC=90°.∴OD⊥AB.【方法归纳】求角的度数问题时,要善于从图形中挖掘隐含条件,如:邻补角、对顶角,然后结合条件给出的角的和、差、倍、分等关系进行计算.2.如图,直线AB,CD相交于点O,已知:∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.考点三平行线的性质与判定【例3】已知:如图,四边形ABCD中,∠A=106°-α,∠ABC=74°+α,BD⊥DC于点D,EF⊥DC于点F.求证:∠1=∠2.【分析】由条件得∠A+∠ABC=180°,得AD∥BC,从而∠1=∠DBC.由BD⊥DC,EF⊥DC,可得BD∥EF,从而∠2=∠DBC,所以∠1=∠2,结论得证.【证明】 ∠A=106°-α,∠ABC=74°+α,∴∠A+∠ABC=180°.∴AD∥BC.∴∠1=∠DBC. BD⊥DC,EF⊥DC,∴∠BDF=∠EFC=90°.∴BD∥EF.∴∠2=∠DBC.∴∠1=∠2.【方法归纳】本题既考查了平行线的性质又考查了平行线的判定.题目的证明用到了“平行线迁移等角”.3.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于()A.60°B.70°C.80°D.90°4.如图,已知∠1=∠2=∠3=59°,则∠4=__________.考点四平移变换【例4】如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出...