—1—0基础知识03课后小测验答案1.arctan2xy在0x处的导数为______.答案:12解析:法一:由arctan2xy解得反函数为2tanxy,由反函数求导法则可知2112secdydxdxydy,当0x时0y,代入得20002111||cos|2sec22xyydyydxy.法二:000211arctan22212xxxxxyx2.22ln()yxax的导数为().A.22aaxB.221axC.22xaxD.221xax答案:B解析:222222222222121112xxaxyxaxaxxaxaxax3.sin(0)xyxx的导数为().A.sin1sinlncosxxxxxxB.sin1sincosxxxxxC.sin1coslnsinxxxxxxD.sin1cossinxxxxx答案:C解析:由对数恒等变形公式得sinsinlnxxxyxe,再由复合函数求导法则得到sinlnsinlnsin11coslnsincoslnsinxxxxxyeexxxxxxxxx.4.设函数yyx由方程yexye所确定,则0y______.A.1eB.1C.1eD.1—2—答案:A解析:方程两边分别对x求导,得0yeyyxy,将0x代入yexye,得1y,再将0x,1y代入0yeyyxy,解得10ye.5.设函数yyx由方程yexye所确定,则0y______.A.21eB.eC.1eD.21e答案:D解析:对上题得到的方程0yeyyxy两边分别对x求导,得到20yyeyeyyyxy,将0x,1y,10ye代入,得210ye.6.设32231xxfxx,求0f().A.3592336B.3592336C.592336D.3512336答案:A解析:在32231xxfxx两端取对数,得11lnln2ln32ln123fxxxx对方程两边分别对x求导,得3211112231111222331223311fxxxfxfxxxxxxxx0f3592336