1Ù1ÙY§1.1ÌSN•n)o´ÅÁ�,¿
3½ÅÁ�,¬¦ÅÁ�m,:.SK1,2.5¿m´Á�¤kU(J8Ü,:´m¥�,=U(J.•ů({¡¯)´mf8.n)7,¯(m),ØU¯(φ,=ع?:),į(ü:8).•¯'X:1.¹(A⊂B):IfA,thenB.2.(A=B):IfA⊂BandB⊂A.3.éá¯(B=A):IfB=notA.4.ØN(A,BØN):IfA,thenB.•¯$(õ¯Ón):1.¿(A∪B):IfAorB.2.�(AB):IfAandB.3.(A−B=AB):IfAandB.•${K:1.�Æ:A∪B=B∪A,AB=BA.2.(ÜÆ:(A∪B)∪C=A∪(B∪C)=A∪B∪C,(AB)C=A(BC)=ABC.3.©Æ:A(B∪C)=AB∪AC.4.éá¯$:A=A.5.éóÆ:A∪B=AB,AB=A∪B;A∪B∪C=ABC,ABC=A∪B∪C.1ݺ|^©¼ã5n)¯'X$9${K.éASK3,4,5,6.•n)ªÇVÇ¿Â,¿ÝºVÇ5:1.K5:0≤P(A)≤1.2.55:P(Ω)=1,P(φ)=0.3.\5:P(A1+A2+A3+···)=P(A1)+P(A2)+P(A3)+···.4.IfA⊂B,thenP(A)≤P(B).•ݺVÇüO.:;VÇ.AÛVÇ..©Oݺùü.£ã±9éAVÇúª.1.;V.:(i).kmΩ={ω1,ω2,···,ωn}.(ii).P(ω1)=P(ω2)=···=P(ωn).¯AVÇ:P(A)=mn=A¤¹:êΩ¥:ê.2.AÛV.:«ΩSÅÝ:,K:Má\Ω,Ü©AVÇ:P(A)=A¡ÈΩ¡È.•ÄOê�n:1.\{�n:©õ«¹.2.¦{�n:©õÚ½.•Äü|Ü:ü|Ü«O´ük^S(½ö?Ò),|ÜØÄ^S.1.Eü:1,2,3,···,n,ùnêi¥Ñkêiü¤,êi±E,o�knk«{.2.ØEü:1,2,3,···,n,ùnêi¥kØÓêiü¤,o�kAkn=n(n−1)···(n−k+1)«{.3.|Ü:1,2,3,···,n,ùnêi¥Ñkêi,ØÄÙk�^S,o�kCkn«{.•üêÚ|Üê:1.PüêAnn=n!¡nü.5½0!=1.2.|ÜêCkn=n!k!(n−k)!=Aknk!.~X:C310=10∗9∗83!.3.Ckn=Cn−kn.~X:C710=C310.§1.2Y)1.2.1.(1)^1P1:,Ù§aí,KmΩ={1,2,3,4,5,6}.(2)^1,2,3PÑ?Ò1,2,3n¥,Ù§aí,KmΩ={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)}.(3)3g¬ÜÑ,¤±�3g,õ10g,u´mΩ={3,4,5,6,7,8,9,10}.(4)^1L¬,0Lg¬;(1,0)L1¬1g¬,daí.m¦(0,0),(0,1,0),(0,1,1,0),(0,1,1,1),(1,0,0),(1,0,1,0),(1,0,1,1),(1,1,0,0),(1,1,0,1),(1,1,1,0),(1,1,1,1)©.)1.2.2.^1L¬,0Lg¬.Km{ω1=(0,0,0,0),ω2=(0,0,0,1),ω3=(0,0,1,1),ω4=(0,1,1,1),ω5=(0,1,0,0),ω6=(0,0,1,0),ω7=(0,1,0,1),ω8=(0,1,1,0...