第42练两角差的余弦公式一、单选题1.cos78°cos18°+sin78°sin18°=()A.B.C.D.-【答案】B【解析】cos78°cos18°+sin78°sin18°=cos(78°-18°)=cos60°=.2.已知sinα=,α是第二象限角,则cos(α-60°)=()A.B.C.D.【答案】B【解析】因为sinα=,α是第二象限角,所以cosα=-,故cos(α-60°)=cosαcos60°+sinαsin60°=(−2√23)×+×=.3.已知点P(1,)是角α终边上一点,则cos(π6−α)等于()A.B.C.-D.【答案】A【解析】由题意可得sinα=,cosα=,cos(π6−α)=coscosα+sinsinα=×+×=.]4.若x∈[0,π],sinsin=coscos,则x的值是()A.B.C.D.【答案】D【解析】由已知得,coscos-sinsin=cosx=0. x∈[0,π],∴x=.5.=()A.B.C.D.【答案】C【解析】原式=====.6.已知cos(θ+π6)=,0<θ<,则cosθ=()A.B.C.D.【答案】A【解析】 θ∈(0,π3),∴θ+∈(π6,π2),∴sin(θ+π6)=√1−cos2(θ+π6)=.cosθ=cos[(θ+π6)−π6]=cos(θ+π6)cos+sin(θ+π6)sin=×+×=.二、多选题7.下列四个选项,化简正确的是()A.cos(-15°)=√6−√24B.cos15°cos105°+sin15°sin105°=cos(15°-105°)=0C.cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos60°=.D.sin14°cos16°+sin76°cos74°=.【答案】BCD【解析】对于A:方法一原式=cos(30°-45°)=cos30°cos45°+sin30°sin45°=×+×=,A错误方法二原式=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=×+×=.对于B:原式=cos(15°-105°)=cos(-90°)=cos90°=0,B正确对于C:原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos60°=.对于D:原式=cos76°cos16°+sin76°sin16°=cos(76°-16°)=cos60°=.故选BCD.8.满足cosαcosβ=+sinαsinβ的α,β的值可能是()A.α=,β=B.α=,β=C.α=,β=D.α=-,β=答案:AD解析:由cosαcosβ=+sinαsinβ,得cosαcosβ-sinαsinβ=,利用两角和的余弦公式,得cos(α+β)=,所以α+β=2kπ±(k∈Z).三、填空题9.在△ABC中,sinA=,cosB=-,则cos(A-B)=________.【答案】-【解析】因为cosB=-,且0