5.2.2导数的四则运算法则第五章一元函数的导数及其应用凯里一中尹洪January26,2025(一)创设情境揭示课题【回顾】基本初等函数的导数公式函数导数公式1.()fxc(c为常数)()0fx2.()(,fxxQ且0)1()fxx3.()sinfxx()cosfxx4.()cosfxx()sinfxx5.()(0,xfxaa1)a()lnxfxaa,特别地,()()xxfxefxe6.()log(0,afxxa1)a1()lnfxxx特别地,1()ln()fxxfxx【问题】遇见下列求导问题如何解决?1.若()sincosfxxx,则()3f________.2.若()cosfxxx,则()6f________.3.若22sin()xfxx,则()2f________.【发现】直接使用简单初等函数的导数公式有困难!(二)阅读精要研讨新知【研究】已知函数2(),()fxxgxx,求下列函数的导数,看看有什么发现?(1)()()fxgx(2)()()fxgx(3)()()fxgx(4)()(()0)()fxgxgx【解析】(1)由已知,设2()()yfxgxxx,所以yx22()()()21xxxxxxxxx所以00[()()]limlim(21)21xxyfxgxyxxxx而()2,()1fxxgx,所以[()()]()()fxgxfxgx(2)同理可得[()()]()()fxgxfxgx(3)由已知,32[()()]()3,fxgxxx()()21fxgxx,显然[()()]()()fxgxfxgx,()()[]()()fxfxgxgx,那么,正确结论是什么呢?【结论】[()()]()()()()fxgxfxgxfxgx【结论】[()()]()()()()fxgxfxgxfxgx事实上,设()()()yhxfxgx,则()()yhxxhxxx()()()()fxxgxxfxgxx()()()()()()()()fxxgxxfxgxxfxgxxfxgxx()()()()()()fxxfxgxxgxgxxfxxx所以0limxyyx0()()()()lim[()()]xfxxfxgxxgxgxxfxxx()()()()fxgxfxgx即[()()]()()()()fxgxfxgxfxgx(4)2()()()()()[](()0)()[()]fxfxgxfxgxgxgxgx【记忆简要】导数公式的四则运算法则令(),()ufxvgx则(),()ufxvgx()uvuv()uvuvuv2()(0)uuvuvvvv【记忆要求】全体默写一遍公式!【法则的作用】【前述问题】遇见下列求导问题如何解决?1.若()sincosfxxx,则()3f________.2.若()cosfxxx,则()6f________.3.若22sin()xfxx,则()2f...