学海在线资源中心shop174248478.taobao.com椭圆的性质编稿:张希勇审稿:李霞【学习目标】1.掌握椭圆的对称性、范围、定点、离心率等简单性质.2.能用椭圆的简单性质求椭圆方程.3.能用椭圆的简单性质分析解决有关问题.【要点梳理】要点一、椭圆的简单几何性质我们根据椭圆来研究椭圆的简单几何性质椭圆的范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b.椭圆的对称性对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。椭圆的顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长和短半轴长。椭圆的离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而越小,因学海在线资源中心shop174248478.taobao.com此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。要点诠释:椭圆的图象中线段的几何特征(如下图):(1),,;(2),,;(3),,;要点二、椭圆标准方程中的三个量a、b、c的几何意义椭圆标准方程中,a、b、c三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的,分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:a>b>0,a>c>0,且a2=b2+c2。可借助下图帮助记忆:a、b、c恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条直角边。和a、b、c有关的椭圆问题常与与焦点三角形有关,这样的问题考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角()结合起来,建立、之间的关系.要点三、椭圆两个标准方程几何性质的比较学海在线资源中心shop174248478.taobao.com标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点,,轴长轴长=,短轴长=离心率要点诠释:椭圆,(a>b>0)的相同点为形状、大小都...