第十一章计数原理、概率、随机变量及其分布列[考纲要求]1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.第一节排列与组合2.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.3.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.突破点一两个计数原理1突破点二排列、组合2课时跟踪检测3Contents返回返回突破点一两个计数原理返回返回抓牢双基·自学回扣[基本知识]1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=种不同的方法.m+nm×n返回返回3.两个计数原理的比较分步乘法计数原理分类加法计数原理名称分步完成一件事,并且只有各个步骤都完成才算完成这件事情,要注意“步”与“步”之间的连续性.分步计数原理可利用“串联”电路来理解分类完成一件事,并且每类办法中的每种方法都能独立完成这件事情,要注意“类”与“类”之间的独立性和并列性.分类计数原理可利用“并联”电路来理解运用乘法运算运用加法运算不同点都是解决完成一件事的不同方法的种数问题相同点返回返回[基本能力]一、判断题(对的打“√”,错的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()答案:(1)×(2)√(3)√返回返回二、填空题1.三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有________种.答案:62.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为________.答案:323.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有________个.答案:120返回返回研透高考·深化提能[全析考法]考法一分类加法计数原理与分步乘法计数原理[例1](1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6B.12C.24D.36[解析]确定第二象限的点,可分两步完成:...