数学选修2RJA04第四章数列044.2等差数列4.24.2.1等差数列的概念题型1等差数列的定义解析4.2.1等差数列的概念刷基础C1.若一个数列的前5项分别是1,2,3,4,5,则下列说法正确的是()A.该数列一定是等差数列B.该数列一定不是等差数列C.该数列不一定是等差数列D.以上结论都不正确若一个数列的前5项分别是1,2,3,4,5,则该数列可能是等差数列、周期数列或其他数列,所以该数列不一定是等差数列.故选C.解析4.2.1等差数列的概念刷基础A2.已知数列{an},对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上,则{an}为()A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列由题意知an=2n+1,则an+1-an=2,故选A.解析4.2.1等差数列的概念刷基础D3.已知数列{an},c为常数,则下列说法正确的是()A.若{an}是等差数列,则{can}不一定是等差数列B.若{an}不是等差数列,则{can}一定不是等差数列C.若{can}是等差数列,则{an}一定是等差数列D.若{can}不是等差数列,则{an}一定不是等差数列若{an}是等差数列,则由等差数列的性质可知,{can}一定是等差数列,故A错误.对于数列{an}:1,2,4,5,令c=0,则{can}为等差数列;当c为0时,0,0,0,0是等差数列,但{an}不是等差数列,故B,C错误.故选D.解析4.2.1等差数列的概念刷基础D4.若{an}是等差数列,则由下列关系确定的数列{bn}也一定是等差数列的是()A.bn=an2B.bn=an+n2C.bn=an+an+1D.bn=nan由{an}是等差数列,设an+1-an=d,则bn=an+an+1满足bn+1-bn=(an+1+an+2)-(an+an+1)=an+2-an=2d.故选C.解析4.2.1等差数列的概念刷基础5.已知数列{an}满足a1=2,an+1=2anan+2.(1)数列1an是否为等差数列?请说明理由.(2)求an.(1)数列1an是等差数列.理由如下:因为a1=2,an+1=2anan+2,所以1an+1=an+22an=12+1an,所以1an+1-1an=12,即1an是首项为1a1=12,公差d=12的等差数列.(2)由(1)可知,1an=1a1+(n-1)d=n2,所以an=2n.题型2等差中项解析4.2.1等差数列的概念刷基础A6.已知a=3-2,b=3+2,则a,b的等差中项为()A.3B.2C.33D.22 a=3-2,b=3+2,∴a,b的等差中项为a+b2=12×(3-2+3+2)=3.故选A.解析4.2.1等差数列的概念刷基础C7.[陕西宝鸡2021高二期中]已知等差数列{an}的前三项分别为a-1,a+1,2a+1,则该数列的通项公式为()A.an=2n-5B.an=2n-3C.an=2n-1D.an=2n+1设该等差数列的公差为d.因...