第二章有理数及其运算七年级数学北师大版·上册2.7.2有理数的乘法运算律教学目标1.掌握乘法的分配律,并能灵活的运用.(难点)2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.(重点)情景导入在小学里,我们都知道,数的乘法满足交换律、结合律和分配律,例如3×5=5×3(3×5)×2=3×(5×2)3×(5+2)=3×5+3×2引入负数后,三种运算律是否还成立呢?新知探究第一组:(2)(3×4)×0.25=3×(4×0.25)=(3)2×(3+4)=2×3+2×4=(1)2×3=3×2=思考:上面每小组运算分别体现了什么运算律?2×33×2(3×4)×0.253×(4×0.25)2×(3+4)2×3+2×466331414===有理数乘法的运算律一新知探究5×(-4)=15-35=第二组:(2)[3×(-4)]×(-5)=3×[(-4)×(-5)]=(3)5×[3+(-7)]=5×3+5×(-7)=(1)5×(-6)=(-6)×5=-30-306060-20-205×(-6)(-6)×5[3×(-4)]×(-5)3×[(-4)×(-5)]5×[3+(-7)]5×3+5×(-7)===(-12)×(-5)=3×20=新知探究结论:(1)第一组式子中数的范围是________;(2)第二组式子中数的范围是________;(3)比较第一组和第二组中的算式,可以发现_________________________________.正数有理数各运算律在有理数范围内仍然适用新知探究两个数相乘,交换两个因数的位置,积相等.ab=ba三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.(ab)c=a(bc)根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以任意交换因数的位置,也可先把其中的几个数相乘.1.乘法交换律:2.乘法结合律:数的范围已扩充到有理数.注意:用字母表示乘数时,“×”号可以写成“·”或省略,如a×b可以写成a·b或ab.归纳总结新知探究一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.3.乘法对加法的分配律:根据分配律可以推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c)ab+ac=a(b+c+d)=ab+ac+ad新知探究53(1)()(24)6853()(24)(24)6820(9)11.解:45(2)(7)()31454(7)()14354()()2310.3你是怎样算的?例1计算:5345(1)()(24);(2)(7)().68314新知探究(+-)×12例2用两种方法计算121614解法1:(+-)×12312212612原式=112=-×12=-1.解法2:原式=×12+×12-×12141612=3+2-6=-1.新知探究解法有错吗?错在哪里????______(-24)×(-+-)58163413解:原式=-24×-24×+24×-24...