1第二章函数§4函数的奇偶性与简单的幂函数4.1函数的奇偶性课后篇巩固提升必备知识基础练1.(多选题)下列函数是奇函数的有()A.y=x\(x-1\)x-1B.y=-3x13C.y=x-2xD.y=πx3-35x解析先判断函数的定义域是否关于原点对称,再确定f(-x)与f(x)的关系.选项A中函数的定义域为(-∞,1)∪(1,+∞),不关于原点对称,所以排除A;选项B,D中函数定义域均为R,且f(-x)=-f(x),故为奇函数;选项C中函数定义域为(-∞,0)∪(0,+∞),且f(-x)=-f(x),也是奇函数.答案BCD2.(2021安徽合肥高一期末)若奇函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2]上()A.单调递增,且有最小值f(1)B.单调递增,且有最大值f(1)C.单调递减,且有最小值f(2)D.单调递减,且有最大值f(2)解析因为奇函数的图象关于原点对称,所以函数f(x)在y轴两侧单调性相同.因为f(x)在区间[-2,-1]上单调递减,所以f(x)在区间[1,2]上单调递减,所以f(x)在区间[1,2]上有最大值f(1),最小值f(2),故选C.答案C3.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递减区间是.解析因为函数f(x)是偶函数,所以k-1=0,即k=1,所以f(x)=-x2+3,其单调递减区间为[0,+∞).答案[0,+∞)4.定义在R上的偶函数f(x),对任意的x1,x2∈[0,+∞)(x1≠x2),有f\(x1\)-f\(x2\)x1-x2<0,则f(3),f(-2),f(1)的大小关系为.解析由已知条件可知f(x)在区间[0,+∞)上单调递减,所以f(3)0,g\(x\),x<0为奇函数,则f(g(-1))=.解析当x<0时,-x>0.因为f(x)是奇函数,所以f(-x)=-f(x)=2(-x)2-7x-4=2x2-7x-4,所以f(x)=-2x2+7x+4.即g(x)=-2x2+7x+4,因此,f(g(-1))=f(-5)=-50-35+4=-81.答案-816.已知函数f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)=.解析令h(x)=x5+ax3+bx,易知h(x)为奇函数.因为f(x)=h(x)-8,h(x)=f(x)+8,所以h(-2)=f(-2)+8=18,所以h(2)=-h(-2)=-18,所以f(2)=h(2)-8=-18-8=-26.答案-267.已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.解(1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值f(x)<0的x的取值集合为(-2,0)∪(2,5).8.已知f(x)为奇函数,且当x<0时,f(x)=x2+3x+2.若当x∈[1,3]时,f(x)的最大值为m,最小值为n,求m-n的值.解 当x<0时,f(x)=x2+3x+2,且f(x)是奇函数,∴当x>0时,-x<0,则f(-x)=x2...