课后限时集训(六十八)离散型随机变量的均值与方差、正态分布建议用时:40分钟一、选择题1.同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X,则X的数学期望是()A.1B.2C.D.A[ 一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为×=,∴X~B,∴E(X)=4×=1.故选A.]2.在某项测试中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(0<ξ<2)=()A.0.4B.0.8C.0.6D.0.2B[由正态分布的图象和性质得P(0<ξ<2)=2P(0<ξ<1)=2×0.4=0.8.故选B.]3.(多选)设离散型随机变量X的分布列为X01234Pq0.40.10.20.2若离散型随机变量Y满足Y=2X+1,则下列结果正确的有()A.q=0.1B.E(X)=2,D(X)=1.4C.E(X)=2,D(X)=1.8D.E(Y)=5,D(Y)=7.2ACD[由离散型随机变量X的分布列的性质得:q=1-0.4-0.1-0.2-0.2=0.1,E(X)=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D(X)=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8, 离散型随机变量Y满足Y=2X+1,∴E(Y)=2E(X)+1=5,D(Y)=4D(X)=7.2.1故选ACD.]4.(多选)设随机变量X服从正态分布N(μ,σ2),且X落在区间(-3,-1)内的概率和落在区间(1,3)内的概率相等.若P(X>2)=p,则下列结论正确的有()A.μ=0B.σ=2C.P(0<X<2)=-pD.P(X<-2)=1-pAC[ 正态分布N(μ,σ2)关于x=μ对称,又X落在区间(-3,-1)内的概率和落在区间(1,3)内的概率相等,∴μ=0,故A正确; 正态分布N(μ,σ2)关于x=μ对称,∴P(X>0)=,则P(0<X<2)=P(X>0)-P(X≥2)=-p,故C正确;P(X<-2)=P(X>2)=p,σ不确定,故B,D错误.故选AC.]5.(2020·全国卷Ⅲ)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且∑pi=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.2B[对于A,当p1=p4=0.1,p2=p3=0.4时,随机变量X1的分布列为X11234P0.10.40.40.1E(X1)=1×0.1+2×0.4+3×0.4+4×0.1=2.5,D(X1)=(1-2.5)2×0.1+(2-2.5)2×0.4+(3-2.5)2×0.4+(4-2.5)2×0.1=1.52×0.1+0.52×0.4+0.52×0.4+1.52×0.1=0.65,所以=.对于B,当p1=p4=0.4,p2=p3=0.1时,随机变量X2的分布列为X21234P0.40.10.10.4E(X2)=1×0.4+2×0.1+3×0.1+4×0.4=2.5,D(X2)=(1-2.5)2×0.4...