专题05平面向量易错点1忽略了零向量的特殊性给出下列命题:①向量的长度与向量的长度相等.②向量a与b平行,则a与b的方向相同或相反.③两个有共同起点而且相等的向量,其终点必相同.④零向量与任意数的乘积都为零.其中不正确命题的序号是.【错解】④【错因分析】解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.学-科网【试题解析】①与是相反向量、模相等,正确;②由零向量的方向是任意的且与任意向量平行,不正确;③相等向量大小相等、方向相同,又起点相同,则终点相同,正确;④零向量与任意数的乘积都为零向量,不正确,故不正确命题的序号是②④.【参考答案】②④解决向量的概念问题应关注六点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量则未必是相等向量.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a与的关系:是a方向上的单位向量.(6)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.1.下列命题正确的是A.B.C.D.【答案】D【解析】A中,两个向量的模相等,但是方向不一定相同,所以不正确;B中,两个向量不能比较大小,所以错误;C中,向量平行只能得到方向相同或相反,不能得到向量相等,所以错误;D中,如果一个向量的模等于0,则这个向量是.易错点2忽视平行四边形的多样性失误已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.【错解】设A(-1,0),B(3,0),C(1,-5),D(x,y), 四边形ABCD为平行四边形,∴=,又 =(4,0),=(1-x,-5-y),∴,解得x=-3,y=-5,∴第四个顶点的坐标为(-3,-5).【错因分析】此题的错解原因为思维定势,错误的认为平行四边形只有一种情形,在解题思路中出现了漏解.实际上,题目的条件中只给出了平行四边形的三个顶点,并没有给出相应的顺序,故可能有三种不同的情形.【试题解析】如图所示,设A(-1,0),B(3,0),C(1,-5),D(x,y).①若四边形ABCD1为平行四边形,则=,而=(x+1,y),=(-2,-5).由=,得,∴,∴D1(-3,-5)....