3反比例函数的应用教学目标:(一)教学知识点1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力.(二)能力训练要求通过对反比例函数的应用,培养学生解决问题的能力.(三)情感与价值观要求经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用.教学重点:用反比例函数的知识解决实际问题.教学难点:如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题.教学方法:教师引导学生探索法.教具准备:多媒体课件教学过程:.Ⅰ创设问题情境,引入新课[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?[生]是为了应用.[师]很好.学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学..Ⅱ新课讲解某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和1/6木板对湿地地面的压力合计600N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板画积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)在直角坐标系中,作出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流.[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题.请大家互相交流后回答.[生](1)由p=得p=p是S的反比例函数,因为给定一个S的值.对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数.(2)当S=0.2m2时,p==3000(Pa).当木板面积为0.2m2时,压强是3000Pa.(3)当p=6000Pa时,S==0.1(m2).如果要求压强不超过6000Pa,木板面积至少要0.1m2.(4)图象如下:(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上2/6点的纵坐标不大于6000,求这些点所处的位置及它们...